• UVA 11722 几何概型


    第六周A题 - 几何概型
    Time Limit:1000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu
     

    Description

    You are going from Dhaka to Chittagong by train and you came to know one of your old friends is going
    from city Chittagong to Sylhet. You also know that both the trains will have a stoppage at junction
    Akhaura at almost same time. You wanted to see your friend there. But the system of the country is
    not that good. The times of reaching to Akhaura for both trains are not fixed. In fact your train can
    reach in any time within the interval [t1, t2] with equal probability. The other one will reach in any
    time within the interval [s1, s2] with equal probability. Each of the trains will stop for w minutes after
    reaching the junction. You can only see your friend, if in some time both of the trains is present in the
    station. Find the probability that you can see your friend.
    Input
    The first line of input will denote the number of cases T (T < 500). Each of the following T line will
    contain 5 integers t1, t2, s1, s2, w (360 ≤ t1 < t2 < 1080, 360 ≤ s1 < s2 < 1080 and 1 ≤ w ≤ 90). All
    inputs t1, t2, s1, s2 and w are given in minutes and t1, t2, s1, s2 are minutes since midnight 00:00.
    Output
    For each test case print one line of output in the format ‘Case #k: p’ Here k is the case number and
    p is the probability of seeing your friend. Up to 1e − 6 error in your output will be acceptable.
    Sample Input
    2
    1000 1040 1000 1040 20
    720 750 730 760 16
    Sample Output
    Case #1: 0.75000000
    Case #2: 0.67111111

    题解:给你两辆火车的到达时间的区间【t1-t2】【s1-s2】,到达后停留时间为w分钟,求坐这两辆火车的人相遇的概率

    求概率的问题,要用到线性规划,不然很难解决

    如果t2+w<s1的话说明无论如何不可能相遇

    然后有四种情况,y=x+w,       y=x-w可直接代入-w

    #include<iostream>
    #include<cstdio>
    using namespace std;
    double t1,s1,t2,s2,w;
    double juge(double ww)
    {
        double s=(t2-t1)*(s2-s1);
        if(t2+ww<s1)
            return 0;
        if(t1+ww<=s1)
        {
            if(t2+ww<=s2)
                return 0.5*(t2+ww-s1)*(t2+ww-s1);  //  1
            else
                return 0.5*(t2+ww-s2+t2+ww-s1)*(s2-s1); //  2
        }
        if(t1+ww<s2)
        {
            if(t2+ww<=s2)
                return 0.5*(t2-t1)*(t2+ww-s1+t1+ww-s1);  //  3
            else
                return s-0.5*(s2-ww-t1)*(s2-ww-t1);          //    4
        }
        else return s;
    }
    int main()
    {
        int t,k=1;
        cin>>t;
        while(t--)
        {
            cin>>t1>>t2>>s1>>s2>>w;
            double yinying=juge(w)-juge(-w);
            yinying/=(t2-t1)*(s2-s1);
            printf("Case #%d: %.8lf
    ",k++,yinying);
        }
    }

     

  • 相关阅读:
    Xamarin Andro教程搭建Xamarin Androidid开发环境(一)
    判断密文加密类型hash-identifier
    Xamarin Android教程如何使用Xamarin开发Android应用
    分享Kali Linux 2016.2第48周虚拟机
    Xamarin Android教程Android基本知识版本介绍与系统介绍
    iOS10 UI教程视图的生命周期
    iOS10 UI教程视图的绘制与视图控制器和视图
    卡尔曼滤波的原理说明
    Bresenham算法
    Stm32 Bootloader整理
  • 原文地址:https://www.cnblogs.com/hfc-xx/p/4738628.html
Copyright © 2020-2023  润新知