POJ - 3356
Description Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
Certainly, we would like to minimize the number of all possible operations. IllustrationA G T A A G T * A G G CDeletion: * in the bottom line This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like A G T A A G T A G G C and 4 moves would be required (3 changes and 1 deletion). In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m. Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed. Write a program that would minimize the number of possible operations to transform any string x into a string y. Input The input consists of the strings x and y prefixed by their respective lengths, which are within 1000. Output An integer representing the minimum number of possible operations to transform any string x into a string y. Sample Input 10 AGTCTGACGC 11 AGTAAGTAGGC Sample Output 4 |
题解:给你两行字符串,第一行为A长度m,第二行为B,长度n,dp[i][j]表示编辑A前i字母和编辑B的前j个字母所需要的操作次数。这里我们要求最少的操作次数。
我们可以执行的操作有删除,插入,还有替换。
解题思路:
长当某一个字符串为空时,那么可以得到dp[0][i] = i和dp[i][0]=i,因为某一字符串为空的,要得到另一个i长度字符串,必须经过i次插入操作。
如果A比B:
如果没有空字符串,有3中操作选择,
1.替换 ,将a[0]和b[0]判断,如果相等,即返回上一个字符的,操作次数加1,即dp[i-1][j-1]+1.
2.删除,所以删除A一个字符,
也就是必须有一次操作,删除A[ ]后,返回A的前一个字符,即dp[i-1][j]+1
3.插入,在B添加一个字符,A不变,如果执行完相等,就要找B的前一个去匹配,所以要减1,和A去匹配,执行了一次,操作次数要加1,即dp[i][j-1] + 1
如果B比A长,则删除和插入交换。
每次选出这三种执行操作数最少的就可以了。
下面的代码
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int dp[1005][1005]; char a[1005],b[1005]; int m,n; int main() { while(~scanf("%d %s",&m,a+1)) { scanf("%d %s",&n,b+1); int maxl=max(m,n); for(int i=0;i<=maxl;i++) { dp[i][0]=i; dp[0][i]=i; } for(int i=1;i<=m;i++) { for(int j=1;j<=n;j++) { if(a[i]==b[j]) dp[i][j]=dp[i-1][j-1]; else dp[i][j]=min(min(dp[i-1][j]+1,dp[i][j-1]+1),dp[i-1][j-1]+1); } } cout<<dp[m][n]<<endl; } }