• POJ2299 Ultra-QuickSort(归并排序求逆序数)


    归并排序求逆序数

     
    Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
     

    Description


    In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
    9 1 0 5 4 ,

    Ultra-QuickSort produces the output 
    0 1 4 5 9 .

    Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

    Input

    The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

    Output

    For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

    Sample Input

    5
    9
    1
    0
    5
    4
    3
    1
    2
    3
    0
    

    Sample Output

    6
    0



    题目大意:

    给出长度为n的序列,每次只能交换相邻的两个元素,问至少要交换几次才使得该序列为递增序列。

    刚刚学了时间复杂度, 用归并排序Mergesort了,O(nlogn),省时,不会超时。

    这里用归并排序并不是为了求交换次数,而是为了求序列的逆序数,而一个乱序序列的逆序数 = 在只允许相邻两个元素交换的条件下,得到有序序列的交换次数。

    案例中的

    9 1 0 5 4

    要把它排列为升序0,1,4,5,9

    而对于序列9 1 0 5 4

    9后面却有4个比9小的元素,因此9的逆序数为4

    1后面只有1个比1小的元素0,因此1的逆序数为1

    0后面不存在比他小的元素,因此0的逆序数为0

    5后面存在1个比他小的元素4, 因此5的逆序数为1

    4是序列的最后元素,逆序数为0

    因此序列9 1 0 5 4的逆序数 t=4+1+0+1+0 = 6  ,就是交换次数

    注意:保存逆序数时,必须要用long long型定义,会WA的。。。 

    #include<iostream>
    using namespace std;
    long long total;
    int n,a[500005];
    int t[500005];
    void merge_sort(int *a,int x,int y,int *t)
    {
        if(y-x>1)
        {
            int m=x+(y-x)/2;
            int p=x,q=m,i=x;
            merge_sort(a,x,m,t);
            merge_sort(a,m,y,t);
            while(p<m||q<y)
            {
                if(q>=y||(p<m&&a[p]<=a[q]))
                    t[i++]=a[p++];
                else
                {
                    t[i++]=a[q++];
                    total+=m-p;//由于合并操作是从小到大进行的,当右边的a【j】复制到T中时,左边还没来得及复制到T得那些数就是左边所有比a【j】大的数,即a【j】的逆序数
                }
            }
            for(i=x; i<y; i++)
                a[i]=t[i];
        }
    }
    int main()
    {
        while(cin>>n&&n)
        {
            total=0;
            for(int i=0; i<n; i++)
                cin>>a[i];
            merge_sort(a,0,n,t);
            cout<<total<<endl;
        }
        return 0;
    }

     

  • 相关阅读:
    网络编程笔记--socket可读可写条件
    redis内核了解
    TIPI 阅读笔记 ----cgi 和 fastcgi
    csv 导 mysql
    Linux IO模式及 select、poll、epoll详解(转载)
    nginx 配置location php 不被解析解决办法
    汇编实验九
    汇编实验四
    实验三
    汇编 实验二
  • 原文地址:https://www.cnblogs.com/hfc-xx/p/4699128.html
Copyright © 2020-2023  润新知