• USACO1.5 Checker Challenge(类n皇后问题)


    B - B
    Time Limit:1000MS     Memory Limit:16000KB     64bit IO Format:%lld & %llu
     

    Description

    Examine the $6 imes 6$ checkerboard below and note that the six checkers are arranged on the board so that one and only one is placed in each row and each column, and there is never more than one in any diagonal. (Diagonals run from southeast to northwest and southwest to northeast and include all diagonals, not just the major two.)

     1   2   3   4   5   6
      -------------------------
    1 |   | O |   |   |   |   |
      -------------------------
    2 |   |   |   | O |   |   |
      -------------------------
    3 |   |   |   |   |   | O |
      -------------------------
    4 | O |   |   |   |   |   |
      -------------------------
    5 |   |   | O |   |   |   |
      -------------------------
    6 |   |   |   |   | O |   |
      -------------------------
    

    The solution shown above is described by the sequence 2 4 6 1 3 5, which gives the column positions of the checkers for each row from $1$ to $6$:

    ROW    1    2   3   4   5   6
    COLUMN 2    4   6   1   3   5 

    This is one solution to the checker challenge. Write a program that finds all unique solution sequences to the Checker Challenge (with ever growing values of $N$). Print the solutions using the column notation described above. Print the the first three solutions in numerical order, as if the checker positions form the digits of a large number, and then a line with the total number of solutions.

    Input

    A single line that contains a single integer $N$ ($6leq Nleq 13$) that is the dimension of the $N imes N$ checkerboard.

    Output

    The first three lines show the first three solutions found, presented as $N$ numbers with a single space between them. The fourth line shows the total number of solutions found.

    Sample Input

    6

    Sample Output

    2 4 6 1 3 5 
    3 6 2 5 1 4 
    4 1 5 2 6 3 
    4

    题解:雷同于八皇后问题。。只是增加了输出摆放的前三种和摆放办法

    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    using namespace std;
    int n,num,s[30],vis[30][30];;
    void search(int cur)
    {
        int i;
        if (cur>n)
        {
            num++;
            if (num<=3)
            {
                for (i=1; i<n; i++) printf("%d ",s[i]);
                printf("%d
    ",s[n]);
            }
            return;
        }
        for (i=1; i<=n; i++)
        {
            if(!vis[0][i]&&!vis[1][cur+i]&&!vis[2][cur-i+n])
            {
                s[cur]=i;
                vis[0][i]=vis[1][cur+i]=vis[2][cur-i+n]=1;
                search(cur+1);
                vis[0][i]=vis[1][cur+i]=vis[2][cur-i+n]=0;
            }
        }
    }
    int main()
    {
        scanf("%d",&n);
        memset(s,0,sizeof(s));
        num=0;
        search(1);
        printf("%d
    ",num);
        return 0;
    }
  • 相关阅读:
    面试题 16:反转链表
    Makefile学习之路6————通过函数增强功能
    Makefile学习之路5————变量
    Makefile学习之路3————规则的运行
    LED灯C语言的点亮方式
    LED灯汇编机器码的点亮方式
    Linux的进阶命令
    入门命令2
    shell命令解析器功能说明及入门命令1
    C++基础 — C++中的变量和三目运算符
  • 原文地址:https://www.cnblogs.com/hfc-xx/p/4694262.html
Copyright © 2020-2023  润新知