• 网络流最大流


    最大流

    网络流图里,源点流出的量,等于汇点流入的量,除源汇外的任何点,其流入量之和等于流出量之和

    残余网络

    在一个网络流图上,找到一条源到汇的路径(即找到了一个流量)后,对路径上所有的边,其容量都减去此次找到的流量,对路径上所有的边,都添加一条反向边,其容量也等于此次找到的流量,这样得到的新图,就称为原图的“残余网络”

    Ford-Fulkerson

    求最大流的过程,就是不断找到一条源到汇的路径,然后构建残余网络,再在残余网络上寻找新的路径,使总流量增加,然后形成新的残余网络,再寻找新路径…..直到某个残余网络上找不到从源到汇的路径为止,最大流就算出来了。
    每次寻找新流量并构造新残余网络的过程,就叫做寻找流量的“增广路径”,也叫“增广”
    时间复杂度为C*(m+n)

    Edmonds-Karp

    在每次增广的时候,选择从源到汇的具有最少边数的增广路径,即不是通过dfs寻找增广路径,而是通过bfs寻找增广路径。
    这就是Edmonds-Karp 最短增广路算法,一般叫EK算法
    复杂度上限为n*m^2(n是点数,m是边数)

    int n,s,e;              //n个点,起点,终点
    int a[maxn][maxn];        //图,邻接矩阵
    int pre[maxn];             //记录路径
    bool vis[maxn];
    
    int bfs()      //源点start,汇点end
    {   
        mem(vis,0);mem(pre,0);
        vis[s] = 1,pre[s] = 0;
        queue<int> q;
        q.push(s);
        bool find = false;          //是否找到
        while(!q.empty())
        {
            int v = q.front();q.pop();
            for(int i = 1; i <= n; i++)
            {
                if(a[v][i] > 0 && !vis[i])
                {
                    pre[i] = v;vis[i] = 1;
                    if(i == e)          //找到汇点
                    {   
                        find = true;
                        break;
                    }
                }
            }
        }
        if(find)
        {
            int res = inf,v = e;        //求出最小的流
            while(pre[v])
            {
                res = min(res,a[pre[v]][v]);
                v = pre[v];
            }
    
            v = e;                  //构建残余网络
            while(pre[v])
            {
                a[pre[v]][v] -= res;        //每条边减去最小流
                a[v][pre[v]] += res;        //建反向边
                v = pre[v];
            }
    
            return res;
        }
        return 0;
    }
    

    Dinic

    Edmonds-Karp的提高余地:需要多次从s到t调用BFS,可以设法减少调用次数。
    时间复杂度(n * n * m)

    1. 先利用 BFS对残余网络分层
    2. 利用 BFS对残余网络分层,分完层后,利用DFS从前一层向后一层反复寻找增广路。
    3. DFS过程中,要是碰到了汇点,则说明找到了一条增广路径。此时要增加总流量的值,消减路径上各边的容量,并添加反向边,即所谓的进行增广
    4. DFS找到一条增广路径后,并不立即结束,而是回溯后继续DFS寻找下一个增广路径。
    #include <bits/stdc++.h>
    using namespace std;
    #define mem(a,b) memset(a,b,sizeof(a))
    #define cin(a) scanf("%d",&a)
    #define pii pair<int,int>
    #define ll long long
    #define gcd __gcd
    const int inf = 0x3f3f3f3f;
    const int maxn = 10100;     //点数
    const int maxm = 200100;    //边数的两倍
    int n,m,s,e,cnt;
    
    int cost[maxm],to[maxm],Next[maxm];      //链式前向星
    int head[maxn]; 
    
    int level[maxn];
    
    void add(int u,int v,int w)         //建图
    {
        to[cnt] = v,cost[cnt] = w;
        Next[cnt] = head[u],head[u] = cnt;
        cnt++;
    }
    
    bool bfs()
    {
        mem(level,-1);
        level[s] = 0;
        queue<int> q; q.push(s);
        while(!q.empty())
        {   
            int u = q.front();
            q.pop();
            for(int i = head[u]; i != -1; i = Next[i])
            {   
                int v = to[i];
                if(cost[i] > 0 && level[v] == -1)
                {   
                    level[v] = level[u] + 1;
                    if(v == e) return true;
                    q.push(v);
                }
            }
        }
        return false;
    }
    
    
    int dfs(int u,int flow)
    {
        if(u == e) return flow;
        int res = flow;
        for(int i = head[u]; i != -1; i = Next[i])
        {   
            if(res==0) break;
            int v = to[i];
            if(cost[i] > 0 && level[v] == level[u] + 1)
            {
                int k = dfs(v,min(res,cost[i]));                //深搜
                res -= k; cost[i] -= k; cost[i^1] += k;         //用res的值来控制回溯,回溯到最小流量的前一条边,继续深搜
            }
        }
        return flow-res;        //返回用掉的流量
    }
    
    
    int dinic()
    {
        int ans = 0;
        while(bfs())
        {
            ans += dfs(s,inf);
        }
        return ans;
    }
    
    int main()
    {
        mem(head,-1);cnt = 0;
        scanf("%d%d%d%d",&n,&m,&s,&e);
        for(int i = 0,u,v,w; i < m; i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);add(v,u,0);
        }
        printf("%d\n",dinic());
        return 0;
    }
    

    dinic弧优化

    和原来的代码区别不打,用一个数组记录\(head\)数组,然后跑过的边就丢掉去就行了,稍稍改动一下代码就能跑的飞快

    int head[maxn],cost[maxm],to[maxm],Next[maxm],cnt = 2;
    
    void add(int u,int v,int w)
    {
        to[cnt] = v;cost[cnt] = w;Next[cnt] = head[u];head[u] = cnt;cnt++;
    }
    
    //用cur代替head是为了修改cur而不改变head,以保证改变可行弧而不改变边与起点的对应关系
    int cur[maxn];      //head
    
    int level[maxn];
    
    int q[maxn];
    
    bool bfs()
    {
        mem(level,0);
        level[s] = 1;
        int h = 1,r = 1;
        q[1] = s;
        while(h <= r)
        {
            int u = q[h++];
            for(int i = head[u]; i ; i = Next[i])
            {
                int v = to[i];
                if(cost[i] && !level[v])
                {
                    level[v] = level[u]+1;
                    if(v == t) return true;
                    q[++r] = v;
                }
            }
        }
        return false;
    }
    
    int dfs(int u,int flow)
    {   
        if(u == t) return flow;
        int res = flow;
        for(int i = cur[u]; i ; i = Next[i])
        {   
            if(res == 0) break;
            cur[u] = i;             //弧优化,每次跑完了就丢掉这个边
            int v = to[i];
            if(cost[i] && level[v] == level[u]+1)
            {
                int k = dfs(v,min(res,cost[i]));
                res -= k;cost[i] -= k;cost[i^1] += k;
            }
        }
        return flow - res;
    }
    
    int dinic()
    {
        int flow = 0;
        while(bfs())
        {
            memcpy(cur,head,sizeof(head));        //复制head数组
            flow += dfs(s,inf);
        }
        return flow;
    }
    
  • 相关阅读:
    大学毕业4年-回顾和总结(10)-资金账务系统的架构设计(产品视角+技术视角)(图文并茂)
    大学毕业4年-回顾和总结(10)-资金账务系统的架构设计(产品视角+技术视角)(图文并茂)
    Spring核心技术(六)——Spring中Bean的生命周期
    商业研究(20):滴滴出行,进军海外包车?与OTA携程和包车创业公司,共演“三国杀”?看看分析师、投资人和权威人士等10个人的观点碰撞
    商业研究(20):滴滴出行,进军海外包车?与OTA携程和包车创业公司,共演“三国杀”?看看分析师、投资人和权威人士等10个人的观点碰撞
    玩转Android之二维码生成与识别
    大学毕业4年-回顾和总结(9)-股权投资1年,给自己一个答卷(好狗狗、皇包车、职业梦、比呀比、易途8)(创业有风险,投资需谨慎)
    大学毕业4年-回顾和总结(9)-股权投资1年,给自己一个答卷(好狗狗、皇包车、职业梦、比呀比、易途8)(创业有风险,投资需谨慎)
    【Raspberry pi】系统安装及基础配置
    【python】字符串编码问题
  • 原文地址:https://www.cnblogs.com/hezongdnf/p/12008120.html
Copyright © 2020-2023  润新知