• 课程五(Sequence Models),第一 周(Recurrent Neural Networks) —— 1.Programming assignments:Building a recurrent neural network


    Building your Recurrent Neural Network - Step by Step

    Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy.

    Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other sequence tasks because they have "memory". They can read inputs xtx⟨t⟩ (such as words) one at a time, and remember some information/context through the hidden layer activations that get passed from one time-step to the next. This allows a uni-directional RNN to take information from the past to process later inputs. A bidirection RNN can take context from both the past and the future.

     

    【中文翻译】

    欢迎来到课程5第一个任务!在这项任务中, 您将在 numpy 中实现第一个循环神经网络。
    循环神经网络 (RNN) 对于自然语言处理和其他序列任务非常有效, 因为它们具有 "记忆"。他们可以一次读取输入 x⟨t⟩ (例如单词), 并记住一些信息/上下文, 通过隐藏层激活值, 从一个时间步骤传递到下一步。这使得一个单向的 RNN 可以用过去的信息处理以后的输入。一个双向的 RNN 可以从过去和未来中得到信息。
     

    Notation:

    • Superscript [l] denotes an object associated with the lth layer.

      • Example: a[4is the 4th layer activation. W[5] and b[5are the 5t layer parameters.
    • Superscript (idenotes an object associated with the ith example.

      • Example: x(iis the it training example input.
    • Superscript t denotes an object at the tth time-step.

      • Example: xt is the input x at the tth time-step. x(i)t is the input at the tth timestep of example i.
    • Lowerscript i denotes the ith entry of a vector.

      • Example: ai[l] denotes the ith entry of the activations in layer l.

    We assume that you are already familiar with numpy and/or have completed the previous courses of the specialization. Let's get started!

    Let's first import all the packages that you will need during this assignment.

    【code】

    import numpy as np
    from rnn_utils import *
    

      

    1 - Forward propagation for the basic Recurrent Neural Network

    Later this week, you will generate music using an RNN. The basic RNN that you will implement has the structure below. In this example, Tx=Ty.

    Here's how you can implement an RNN:

    Steps:

    1. Implement the calculations needed for one time-step of the RNN.
    2. Implement a loop over Tx time-steps in order to process all the inputs, one at a time.

    Let's go!

    1.1 - RNN cell

    A Recurrent neural network can be seen as the repetition of a single cell. You are first going to implement the computations for a single time-step. The following figure describes the operations for a single time-step of an RNN cell.

     

    Figure 2: Basic RNN cell. Takes as input xt (current input) and at1 (previous hidden state containing information from the past), and outputs at⟩ which is given to the next RNN cell and also used to predict yt

    Exercise: Implement the RNN-cell described in Figure (2).

    Instructions:

    1. Compute the hidden state with tanh activation: at=tanh(Waaat1+Waxxt+ba).
    2. Using your new hidden state at, compute the prediction ŷ t=softmax(Wyaat+by). We provided you a function: softmax.
    3. Store (at,at1,xt,parametersin cache
    4. Return at⟩ yt⟩  and cache

    We will vectorize over m examples. Thus, xt will have dimension (nx,m), and at will have dimension (na,m).

     【code】

    # GRADED FUNCTION: rnn_cell_forward
    
    def rnn_cell_forward(xt, a_prev, parameters):
        """
        Implements a single forward step of the RNN-cell as described in Figure (2)
    
        Arguments:
        xt -- your input data at timestep "t", numpy array of shape (n_x, m).
        a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
        parameters -- python dictionary containing:
                            Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                            Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                            Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                            ba --  Bias, numpy array of shape (n_a, 1)
                            by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
        Returns:
        a_next -- next hidden state, of shape (n_a, m)
        yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
        cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters)
        """
        
        # Retrieve parameters from "parameters"
        Wax = parameters["Wax"]
        Waa = parameters["Waa"]
        Wya = parameters["Wya"]
        ba = parameters["ba"]
        by = parameters["by"]
        
        ### START CODE HERE ### (≈2 lines)
        # compute next activation state using the formula given above
        a_next = np.tanh(np.dot(Wax,xt) + np.dot(Waa,a_prev)+ ba )
        # compute output of the current cell using the formula given above
        yt_pred = softmax(np.dot(Wya,a_next)+ by)   
        ### END CODE HERE ###
        
        # store values you need for backward propagation in cache
        cache = (a_next, a_prev, xt, parameters)
        
        return a_next, yt_pred, cache
    
    np.random.seed(1)
    xt = np.random.randn(3,10)
    a_prev = np.random.randn(5,10)
    Waa = np.random.randn(5,5)
    Wax = np.random.randn(5,3)
    Wya = np.random.randn(2,5)
    ba = np.random.randn(5,1)
    by = np.random.randn(2,1)
    parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
    
    a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters)
    print("a_next[4] = ", a_next[4])
    print("a_next.shape = ", a_next.shape)
    print("yt_pred[1] =", yt_pred[1])
    print("yt_pred.shape = ", yt_pred.shape)
    

    【result】

    a_next[4] =  [ 0.59584544  0.18141802  0.61311866  0.99808218  0.85016201  0.99980978
     -0.18887155  0.99815551  0.6531151   0.82872037]
    a_next.shape =  (5, 10)
    yt_pred[1] = [ 0.9888161   0.01682021  0.21140899  0.36817467  0.98988387  0.88945212
      0.36920224  0.9966312   0.9982559   0.17746526]
    yt_pred.shape =  (2, 10)
    

    Expected Output:

    a_next[4]: [ 0.59584544 0.18141802 0.61311866 0.99808218 0.85016201 0.99980978 -0.18887155 0.99815551 0.6531151 0.82872037]
    a_next.shape: (5, 10)
    yt[1]: [ 0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212 0.36920224 0.9966312 0.9982559 0.17746526]
    yt.shape: (2, 10)

      

    1.2 - RNN forward pass

    You can see an RNN as the repetition of the cell you've just built. If your input sequence of data is carried over 10 time steps, then you will copy the RNN cell 10 times. Each cell takes as input the hidden state from the previous cell (at1) and the current time-step's input data (xt). It outputs a hidden state (at) and a prediction (yt) for this time-step.

    Figure 3: Basic RNN. The input sequence x=(x1,x2,...,xTx)is carried over Tx time steps. The network outputs y=(y1,y2,...,yTx).

    Exercise: Code the forward propagation of the RNN described in Figure (3).

    Instructions:

    1. Create a vector of zeros (a) that will store all the hidden states computed by the RNN.
    2. Initialize the "next" hidden state as a0 (initial hidden state).
    3. Start looping over each time step, your incremental index is t :
      • Update the "next" hidden state and the cache by running rnn_cell_forward
      • Store the "next" hidden state in a (tth position)
      • Store the prediction in y
      • Add the cache to the list of caches
    4. Return a, y and caches

    【中文翻译】  

    练习: 对图 (3) 中描述的 RNN 的向前传播进行编码。
    说明:
    1. 创建一个f zeros (a) 的向量, 它将存储由 RNN 计算的所有隐藏层状态。
    2. 将 "下一个" 隐藏层状态初始化为 a0 (初始隐藏层状态)。
    3. 每次步骤开始循环, 增量索引 t:
      •  通过运行 rnn_cell_forward 更新 "下一个" 隐藏层状态缓存
      •  在 a 存储 "下一个" 隐藏层状态 (tth 位置)
      •  将预测存储 y 
      •  将缓存添加缓存列表
    4. 返回 ay 缓存

    【code】

     

    # GRADED FUNCTION: rnn_forward
    
    def rnn_forward(x, a0, parameters):
        """
        Implement the forward propagation of the recurrent neural network described in Figure (3).
    
        Arguments:
        x -- Input data for every time-step, of shape (n_x, m, T_x).
        a0 -- Initial hidden state, of shape (n_a, m)
        parameters -- python dictionary containing:
                            Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                            Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                            Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                            ba --  Bias numpy array of shape (n_a, 1)
                            by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    
        Returns:
        a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
        y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
        caches -- tuple of values needed for the backward pass, contains (list of caches, x)
        """
        
        # Initialize "caches" which will contain the list of all caches
        caches = []
        
        # Retrieve dimensions from shapes of x and parameters["Wya"]
        n_x, m, T_x = x.shape
        n_y, n_a = parameters["Wya"].shape
        
        ### START CODE HERE ###
        
        # initialize "a" and "y" with zeros (≈2 lines)
        a = np.zeros((n_a, m, T_x))
        y_pred = np.zeros((n_y, m, T_x))
        
        # Initialize a_next (≈1 line)
        a_next = a0
        
        # loop over all time-steps
        for t in range(T_x):
            # Update next hidden state, compute the prediction, get the cache (≈1 line)
            a_next, yt_pred, cache = rnn_cell_forward(x[:,:,t], a_next, parameters)
            # Save the value of the new "next" hidden state in a (≈1 line)
            a[:,:,t] = a_next
            # Save the value of the prediction in y (≈1 line)
            y_pred[:,:,t] = yt_pred
            # Append "cache" to "caches" (≈1 line)
            caches.append(cache) 
            
        ### END CODE HERE ###
        
        # store values needed for backward propagation in cache
        caches = (caches, x)
        
        return a, y_pred, caches
    np.random.seed(1)
    x = np.random.randn(3,10,4)
    a0 = np.random.randn(5,10)
    Waa = np.random.randn(5,5)
    Wax = np.random.randn(5,3)
    Wya = np.random.randn(2,5)
    ba = np.random.randn(5,1)
    by = np.random.randn(2,1)
    parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
    
    a, y_pred, caches = rnn_forward(x, a0, parameters)
    print("a[4][1] = ", a[4][1])
    print("a.shape = ", a.shape)
    print("y_pred[1][3] =", y_pred[1][3])
    print("y_pred.shape = ", y_pred.shape)
    print("caches[1][1][3] =", caches[1][1][3])
    print("len(caches) = ", len(caches))
    

    【result】

    a[4][1] =  [-0.99999375  0.77911235 -0.99861469 -0.99833267]
    a.shape =  (5, 10, 4)
    y_pred[1][3] = [ 0.79560373  0.86224861  0.11118257  0.81515947]
    y_pred.shape =  (2, 10, 4)
    caches[1][1][3] = [-1.1425182  -0.34934272 -0.20889423  0.58662319]
    len(caches) =  2
    

     

    Expected Output:

    a[4][1]: [-0.99999375 0.77911235 -0.99861469 -0.99833267]
    a.shape: (5, 10, 4)
    y[1][3]: [ 0.79560373 0.86224861 0.11118257 0.81515947]
    y.shape: (2, 10, 4)
    cache[1][1][3]: [-1.1425182 -0.34934272 -0.20889423 0.58662319]
    len(cache): 2

      

    Congratulations! You've successfully built the forward propagation of a recurrent neural network from scratch. This will work well enough for some applications, but it suffers from vanishing gradient problems. So it works best when each output yt can be estimated using mainly "local" context (meaning information from inputs xt where t′ is not too far from t).

    In the next part, you will build a more complex LSTM model, which is better at addressing vanishing gradients. The LSTM will be better able to remember a piece of information and keep it saved for many timesteps.

    2 - Long Short-Term Memory (LSTM) network

    This following figure shows the operations of an LSTM-cell.

    Figure 4: LSTM-cell. This tracks and updates a "cell state" or memory variable ct at every time-step, which can be different from at.

    Similar to the RNN example above, you will start by implementing the LSTM cell for a single time-step. Then you can iteratively call it from inside a for-loop to have it process an input with Tx time-steps. 

    About the gates

    - Forget gate

    For the sake of this illustration, lets assume we are reading words in a piece of text, and want use an LSTM to keep track of grammatical structures, such as whether the subject is singular or plural. If the subject changes from a singular word to a plural word, we need to find a way to get rid of our previously stored memory value of the singular/plural state. In an LSTM, the forget gate lets us do this:

    Here, Wf are weights that govern the forget gate's behavior. We concatenate [at1,xtand multiply by Wf. The equation above results in a vector Γft with values between 0 and 1. This forget gate vector will be multiplied element-wise by the previous cell state ct1. So if one of the values of Γft  is 0 (or close to 0) then it means that the LSTM should remove that piece of information (e.g. the singular subject) in the corresponding component of ct1. If one of the values is 1, then it will keep the information.

    - Update gate

    Once we forget that the subject being discussed is singular, we need to find a way to update it to reflect that the new subject is now plural. Here is the formulat for the update gate:

     

    Similar to the forget gate, here Γut is again a vector of values between 0 and 1. This will be multiplied element-wise with c̃ t, in order to compute ct.

    - Updating the cell

    To update the new subject we need to create a new vector of numbers that we can add to our previous cell state. The equation we use is:

     

    Finally, the new cell state is:

     

    - Output gate

    To decide which outputs we will use, we will use the following two formulas:

     

    Where in equation 5 you decide what to output using a sigmoid function and in equation 6 you multiply that by the tanh of the previous state.

     【中文翻译】

    ——遗忘
    为了说明这一点, 我们假设我们正在阅读一段文本中的单词, 并希望使用 LSTM 来跟踪语法结构, 例如主语是单数还是复数。如果主语从一个单数词变为复数词, 我们需要找到一种方法来去除以前存储的单数/复数状态的内存值。 LSTM , 遗忘我们这样做:

     

    在这里, Wf 是控制遗忘门行为的权重。我们连接 [at1,xt , 乘以 Wf 。上面的等式导致向量Γft值在0和1之间。这个忘记门向量将被乘以前细胞状态 c⟨t−1⟩。因此, 如果Γft的值之一是 0 (或接近 0), 则表示 LSTM 应在 c⟨t−1⟩的相应组件中删除该信息 (如单数)。如果其中一个值为 1, 则它将保留该信息。 

    ——更新
    一旦我们忘记了正在讨论的主语是单数的, 我们需要找到一种方法来更新它, 以反映新的主语现在是复数。更新的 公式:

     

     类似于遗忘门, 这里Γut 向量值在0和1之间。这将乘以c̃ t, 以计算 c⟨t⟩

    ——更新细胞
    要更新新的细胞, 我们需要创建一个新的数字向量, 我们可以添加到我们以前的细胞状态。我们使用等式:

     

    最后, 新细胞状态: 

     

    ——输出
    决定我们使用输出, 我们使用以下两个公式:

     

     在等式5中, 你决定用一个 sigmoid函数输出什么, 在等式6中, 你乘以以前状态的 tanh。

    2.1 - LSTM cell

    Exercise: Implement the LSTM cell described in the Figure (3).

    Instructions:

    1. Concatenate at1 and xt⟩ in a single matrix: 
    2. Compute all the formulas 1-6. You can use sigmoid() (provided) and np.tanh().
    3. Compute the prediction yt. You can use softmax() (provided).

    【code】

    # GRADED FUNCTION: lstm_cell_forward
    
    def lstm_cell_forward(xt, a_prev, c_prev, parameters):
        """
        Implement a single forward step of the LSTM-cell as described in Figure (4)
    
        Arguments:
        xt -- your input data at timestep "t", numpy array of shape (n_x, m).
        a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
        c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m)
        parameters -- python dictionary containing:
                            Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                            bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
                            Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
                            bi -- Bias of the update gate, numpy array of shape (n_a, 1)
                            Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
                            bc --  Bias of the first "tanh", numpy array of shape (n_a, 1)
                            Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
                            bo --  Bias of the output gate, numpy array of shape (n_a, 1)
                            Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                            by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
                            
        Returns:
        a_next -- next hidden state, of shape (n_a, m)
        c_next -- next memory state, of shape (n_a, m)
        yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
        cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters)
        
        Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilde),
              c stands for the memory value
        """
    
        # Retrieve parameters from "parameters"
        Wf = parameters["Wf"]
        bf = parameters["bf"]
        Wi = parameters["Wi"]
        bi = parameters["bi"]
        Wc = parameters["Wc"]
        bc = parameters["bc"]
        Wo = parameters["Wo"]
        bo = parameters["bo"]
        Wy = parameters["Wy"]
        by = parameters["by"]
        
        # Retrieve dimensions from shapes of xt and Wy
        n_x, m = xt.shape
        n_y, n_a = Wy.shape
    
        ### START CODE HERE ###
        # Concatenate a_prev and xt (≈3 lines)
        
        # xt -- your input data at timestep "t", numpy array of shape (n_x, m).
        # a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
        
        concat = np.zeros([n_x+n_a,m])
        concat[: n_a, :] = a_prev
        concat[n_a :, :] = xt
    
        # Compute values for ft, it, cct, c_next, ot, a_next using the formulas given figure (4) (≈6 lines)
        ft = sigmoid(np.dot(Wf,concat)+bf)
        it = sigmoid(np.dot(Wi,concat)+bi)
        cct = np.tanh(np.dot(Wc,concat)+bc)
        c_next = ft*c_prev + it*cct
        ot = sigmoid(np.dot(Wo,concat)+bo)
        a_next =ot* np.tanh(c_next)
        
        # Compute prediction of the LSTM cell (≈1 line)
        yt_pred = softmax(a_next)
        ### END CODE HERE ###
    
        # store values needed for backward propagation in cache
        cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters)
    
        return a_next, c_next, yt_pred, cache
    
    np.random.seed(1)
    xt = np.random.randn(3,10)
    a_prev = np.random.randn(5,10)
    c_prev = np.random.randn(5,10)
    Wf = np.random.randn(5, 5+3)
    bf = np.random.randn(5,1)
    Wi = np.random.randn(5, 5+3)
    bi = np.random.randn(5,1)
    Wo = np.random.randn(5, 5+3)
    bo = np.random.randn(5,1)
    Wc = np.random.randn(5, 5+3)
    bc = np.random.randn(5,1)
    Wy = np.random.randn(2,5)
    by = np.random.randn(2,1)
    
    parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
    
    a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)
    print("a_next[4] = ", a_next[4])
    print("a_next.shape = ", c_next.shape)
    print("c_next[2] = ", c_next[2])
    print("c_next.shape = ", c_next.shape)
    print("yt[1] =", yt[1])
    print("yt.shape = ", yt.shape)
    print("cache[1][3] =", cache[1][3])
    print("len(cache) = ", len(cache))
    

    【result】

    a_next[4] =  [-0.66408471  0.0036921   0.02088357  0.22834167 -0.85575339  0.00138482
      0.76566531  0.34631421 -0.00215674  0.43827275]
    a_next.shape =  (5, 10)
    c_next[2] =  [ 0.63267805  1.00570849  0.35504474  0.20690913 -1.64566718  0.11832942
      0.76449811 -0.0981561  -0.74348425 -0.26810932]
    c_next.shape =  (5, 10)
    yt[1] = [ 0.30831726  0.1609229   0.17145947  0.19722879  0.25181449  0.20285798
      0.08757126  0.19024486  0.14454214  0.17710263]
    yt.shape =  (5, 10)
    cache[1][3] = [-0.16263996  1.03729328  0.72938082 -0.54101719  0.02752074 -0.30821874
      0.07651101 -1.03752894  1.41219977 -0.37647422]
    len(cache) =  10
    

    Expected Output:

    a_next[4]: [-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482 0.76566531 0.34631421 -0.00215674 0.43827275]
    a_next.shape: (5, 10)
    c_next[2]: [ 0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942 0.76449811 -0.0981561 -0.74348425 -0.26810932]
    c_next.shape: (5, 10)
    yt[1]: [ 0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381 0.00943007 0.12666353 0.39380172 0.07828381]
    yt.shape: (2, 10)
    cache[1][3]: [-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874 0.07651101 -1.03752894 1.41219977 -0.37647422]
    len(cache): 10

     

    2.2 - Forward pass for LSTM

    Now that you have implemented one step of an LSTM, you can now iterate this over this using a for-loop to process a sequence of Tx inputs.

     

    Exercise: Implement lstm_forward() to run an LSTM over TxTx time-steps.

    Notec0⟩ is initialized with zeros.

    【code】

    # GRADED FUNCTION: lstm_forward
    
    def lstm_forward(x, a0, parameters):
        """
        Implement the forward propagation of the recurrent neural network using an LSTM-cell described in Figure (3).
    
        Arguments:
        x -- Input data for every time-step, of shape (n_x, m, T_x).
        a0 -- Initial hidden state, of shape (n_a, m)
        parameters -- python dictionary containing:
                            Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                            bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
                            Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
                            bi -- Bias of the update gate, numpy array of shape (n_a, 1)
                            Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
                            bc -- Bias of the first "tanh", numpy array of shape (n_a, 1)
                            Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
                            bo -- Bias of the output gate, numpy array of shape (n_a, 1)
                            Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                            by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
                            
        Returns:
        a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
        y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
        caches -- tuple of values needed for the backward pass, contains (list of all the caches, x)
        """
    
        # Initialize "caches", which will track the list of all the caches
        caches = []
        
        ### START CODE HERE ###
        # Retrieve dimensions from shapes of x and parameters['Wy'] (≈2 lines)
        n_x, m, T_x = x.shape
        n_y, n_a = parameters['Wy'].shape
        
        # initialize "a", "c" and "y" with zeros (≈3 lines)
        a = np.zeros([n_a, m, T_x])
        c = np.zeros([n_a, m, T_x])
        y = np.zeros([n_y, m, T_x])
        
        # Initialize a_next and c_next (≈2 lines)
        a_next = a0
        c_next = np.zeros([n_a, m])
        
        # loop over all time-steps
        for t in range(T_x):
            # Update next hidden state, next memory state, compute the prediction, get the cache (≈1 line)
            a_next, c_next, yt, cache = lstm_cell_forward(x[:,:,t], a_next, c_next, parameters)
            # Save the value of the new "next" hidden state in a (≈1 line)
            a[:,:,t] = a_next
            # Save the value of the prediction in y (≈1 line)
            y[:,:,t] = yt
            # Save the value of the next cell state (≈1 line)
            c[:,:,t]  = c_next
            # Append the cache into caches (≈1 line)
            caches.append(cache)
            
        ### END CODE HERE ###
        
        # store values needed for backward propagation in cache
        caches = (caches, x)
    
        return a, y, c, caches
    
    np.random.seed(1)
    x = np.random.randn(3,10,7)
    a0 = np.random.randn(5,10)
    Wf = np.random.randn(5, 5+3)
    bf = np.random.randn(5,1)
    Wi = np.random.randn(5, 5+3)
    bi = np.random.randn(5,1)
    Wo = np.random.randn(5, 5+3)
    bo = np.random.randn(5,1)
    Wc = np.random.randn(5, 5+3)
    bc = np.random.randn(5,1)
    Wy = np.random.randn(2,5)
    by = np.random.randn(2,1)
    
    parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
    
    a, y, c, caches = lstm_forward(x, a0, parameters)
    print("a[4][3][6] = ", a[4][3][6])
    print("a.shape = ", a.shape)
    print("y[1][4][3] =", y[1][4][3])
    print("y.shape = ", y.shape)
    print("caches[1][1[1]] =", caches[1][1][1])
    print("c[1][2][1]", c[1][2][1])
    print("len(caches) = ", len(caches))
    

    【result】

    a[4][3][6] =  0.172117767533
    a.shape =  (5, 10, 7)
    y[1][4][3] = 0.95087346185
    y.shape =  (2, 10, 7)
    caches[1][1[1]] = [ 0.82797464  0.23009474  0.76201118 -0.22232814 -0.20075807  0.18656139
      0.41005165]
    c[1][2][1] -0.855544916718
    len(caches) =  2
    

    Expected Output:

    a[4][3][6] = 0.172117767533
    a.shape = (5, 10, 7)
    y[1][4][3] = 0.95087346185
    y.shape = (2, 10, 7)
    caches[1][1][1] = [ 0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139 0.41005165]
    c[1][2][1] = -0.855544916718
    len(caches) = 2

      

    Congratulations! You have now implemented the forward passes for the basic RNN and the LSTM. When using a deep learning framework, implementing the forward pass is sufficient to build systems that achieve great performance.

    The rest of this notebook is optional, and will not be graded.

      

    3.1 - Basic RNN backward pass

    We will start by computing the backward pass for the basic RNN-cell.

    Figure 5: RNN-cell's backward pass. Just like in a fully-connected neural network, the derivative of the cost function J backpropagates through the RNN by following the chain-rule from calculas. The chain-rule is also used to calculate to update the parameters 

    Deriving the one step backward functions:

    To compute the rnn_cell_backward you need to compute the following equations. It is a good exercise to derive them by hand.

    The derivative of tanh is . You can find the complete proof here. Note that: 

    Similarly for , the derivative of tanh(u) is .

    The final two equations also follow same rule and are derived using the tanhtanh derivative. Note that the arrangement is done in a way to get the same dimensions to match.

    【code】  

    def rnn_cell_backward(da_next, cache):
        """
        Implements the backward pass for the RNN-cell (single time-step).
    
        Arguments:
        da_next -- Gradient of loss with respect to next hidden state
        cache -- python dictionary containing useful values (output of rnn_cell_forward())
    
        Returns:
        gradients -- python dictionary containing:
                            dx -- Gradients of input data, of shape (n_x, m)
                            da_prev -- Gradients of previous hidden state, of shape (n_a, m)
                            dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)
                            dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)
                            dba -- Gradients of bias vector, of shape (n_a, 1)
        """
        
        # Retrieve values from cache
        (a_next, a_prev, xt, parameters) = cache
        
        # Retrieve values from parameters
        Wax = parameters["Wax"]
        Waa = parameters["Waa"]
        Wya = parameters["Wya"]
        ba = parameters["ba"]
        by = parameters["by"]
    
        ### START CODE HERE ###
        # compute the gradient of tanh with respect to a_next (≈1 line)  , dtanh 可以只看做一个中间结果的表示方式
        dtanh = (1- a_next**2) * da_next   #注意这里是 element_wise ,即 * da_next
    
        # compute the gradient of the loss with respect to Wax (≈2 lines)
        # 根据公式1、2, dxt =  da_next .(  Wax.T  . (1- tanh(a_next)**2) ) = da_next .(  Wax.T  . dtanh * (1/d_a_next) )= Wax.T  . dtanh 
        # 根据公式1、3, dWax =  da_next .( (1- tanh(a_next)**2) . xt.T) = da_next .(  dtanh * (1/d_a_next) . xt.T )=  dtanh . xt.T  
        # 上面的 . 表示 np.dot
        dxt = np.dot(Wax.T, dtanh)  
        dWax =  np.dot(dtanh,xt.T)  
    
        # compute the gradient with respect to Waa (≈2 lines)
        da_prev = np.dot(Waa.T, dtanh) 
        dWaa = np.dot(dtanh,a_prev.T) 
        
        # compute the gradient with respect to b (≈1 line)
        #   axis=0 列方向上操作 axis=1 行方向上操作  keepdims=True 矩阵的二维特性
        dba = np.sum(dtanh, axis=1, keepdims=True)
    
        ### END CODE HERE ###
        
        # Store the gradients in a python dictionary
        gradients = {"dxt": dxt, "da_prev": da_prev, "dWax": dWax, "dWaa": dWaa, "dba": dba}
        
        return gradients
    
    np.random.seed(1)
    xt = np.random.randn(3,10)
    a_prev = np.random.randn(5,10)
    Wax = np.random.randn(5,3)
    Waa = np.random.randn(5,5)
    Wya = np.random.randn(2,5)
    b = np.random.randn(5,1)
    by = np.random.randn(2,1)
    parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
    
    a_next, yt, cache = rnn_cell_forward(xt, a_prev, parameters)
    
    da_next = np.random.randn(5,10)
    gradients = rnn_cell_backward(da_next, cache)
    print("gradients["dxt"][1][2] =", gradients["dxt"][1][2])
    print("gradients["dxt"].shape =", gradients["dxt"].shape)
    print("gradients["da_prev"][2][3] =", gradients["da_prev"][2][3])
    print("gradients["da_prev"].shape =", gradients["da_prev"].shape)
    print("gradients["dWax"][3][1] =", gradients["dWax"][3][1])
    print("gradients["dWax"].shape =", gradients["dWax"].shape)
    print("gradients["dWaa"][1][2] =", gradients["dWaa"][1][2])
    print("gradients["dWaa"].shape =", gradients["dWaa"].shape)
    print("gradients["dba"][4] =", gradients["dba"][4])
    print("gradients["dba"].shape =", gradients["dba"].shape)
    

    【result】

    gradients["dxt"][1][2] = -0.460564103059
    gradients["dxt"].shape = (3, 10)
    gradients["da_prev"][2][3] = 0.0842968653807
    gradients["da_prev"].shape = (5, 10)
    gradients["dWax"][3][1] = 0.393081873922
    gradients["dWax"].shape = (5, 3)
    gradients["dWaa"][1][2] = -0.28483955787
    gradients["dWaa"].shape = (5, 5)
    gradients["dba"][4] = [ 0.80517166]
    gradients["dba"].shape = (5, 1)
    

    Expected Output:

    gradients["dxt"][1][2] = -0.460564103059
    gradients["dxt"].shape = (3, 10)
    gradients["da_prev"][2][3] = 0.0842968653807
    gradients["da_prev"].shape = (5, 10)
    gradients["dWax"][3][1] = 0.393081873922
    gradients["dWax"].shape = (5, 3)
    gradients["dWaa"][1][2] = -0.28483955787
    gradients["dWaa"].shape = (5, 5)
    gradients["dba"][4] = [ 0.80517166]
    gradients["dba"].shape = (5, 1)

      

    Backward pass through the RNN

    Computing the gradients of the cost with respect to at at every time-step t is useful because it is what helps the gradient backpropagate to the previous RNN-cell. To do so, you need to iterate through all the time steps starting at the end, and at each step, you increment the overall dbadWaadWaand you store dx.

    Instructions:

    Implement the rnn_backward function. Initialize the return variables with zeros first and then loop through all the time steps while calling the rnn_cell_backward at each time timestep, update the other variables accordingly.

    【中文翻译】

    RNN的反向传播
    在每次时间步 t 时计算成本函数对 a⟨t⟩的梯度是有用的, 因为它有助于梯度 反向传播 到上一个 RNN 单元。为此, 您需要遍历从末尾开始的所有时间步骤, 并在每个步骤中递增整个 dbadWaadWax 和您存储 的dx。
     
    说明:
    实现 rnn_backward 函数。首先用零初始化返回变量, 然后在每次调用 rnn_cell_backward 时循环遍历所有的时间步, 相应地更新其他变量。

    【code】

    def rnn_backward(da, caches):
        """
        Implement the backward pass for a RNN over an entire sequence of input data.
    
        Arguments:
        da -- Upstream (上游)gradients of all hidden states, of shape (n_a, m, T_x)
        caches -- tuple containing information from the forward pass (rnn_forward)
    
        Returns:
        gradients -- python dictionary containing:
                            dx -- Gradient w.r.t. the input data, numpy-array of shape (n_x, m, T_x)
                            da0 -- Gradient w.r.t the initial hidden state, numpy-array of shape (n_a, m)
                            dWax -- Gradient w.r.t the input's weight matrix, numpy-array of shape (n_a, n_x)
                            dWaa -- Gradient w.r.t the hidden state's weight matrix, numpy-arrayof shape (n_a, n_a)
                            dba -- Gradient w.r.t the bias, of shape (n_a, 1)
        """
    
        ### START CODE HERE ###
    
        # Retrieve values from the first cache (t=1) of caches (≈2 lines)
        (caches, x) = caches
        (a1, a0, x1, parameters) = caches[0]  # t=1 时的值
    
        # Retrieve dimensions from da's and x1's shapes (≈2 lines)
        n_a, m, T_x = da.shape
        n_x, m = x1.shape
    
        # initialize the gradients with the right sizes (≈6 lines)
        dx = np.zeros((n_x, m, T_x))
        dWax = np.zeros(parameters["Wax"].shape)
        dWaa = np.zeros(parameters["Waa"].shape)
        dba = np.zeros(parameters["ba"].shape)
        da0 = np.zeros(a0.shape)
        da_prevt = np.zeros((n_a, m))
    
        # Loop through all the time steps
        for t in reversed(range(T_x)):
            # Compute gradients at time step t. Choose wisely the "da_next" and the "cache" to use in the backward propagation step. (≈1 line)
            gradients = rnn_cell_backward(da[:,:,t] + da_prevt, caches[t]) # da[:,:,t] + da_prevt ,每一个时间步后更新梯度
            # Retrieve derivatives from gradients (≈ 1 line)
            dxt, da_prevt, dWaxt, dWaat, dbat = gradients["dxt"], gradients["da_prev"], gradients["dWax"], gradients["dWaa"], gradients["dba"]
            # Increment global derivatives w.r.t parameters by adding their derivative at time-step t (≈4 lines)
            dx[:, :, t] = dxt
            dWax += dWaxt
            dWaa += dWaat
            dba += dbat
    
        # Set da0 to the gradient of a which has been backpropagated through all time-steps (≈1 line) 
        da0 = da_prevt
        ### END CODE HERE ###
    
        # Store the gradients in a python dictionary
        gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa,"dba": dba}
    
        return gradients
    
    np.random.seed(1)
    x = np.random.randn(3,10,4)
    a0 = np.random.randn(5,10)
    Wax = np.random.randn(5,3)
    Waa = np.random.randn(5,5)
    Wya = np.random.randn(2,5)
    ba = np.random.randn(5,1)
    by = np.random.randn(2,1)
    parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
    a, y, caches = rnn_forward(x, a0, parameters)
    da = np.random.randn(5, 10, 4)
    gradients = rnn_backward(da, caches)
    
    print("gradients["dx"][1][2] =", gradients["dx"][1][2])
    print("gradients["dx"].shape =", gradients["dx"].shape)
    print("gradients["da0"][2][3] =", gradients["da0"][2][3])
    print("gradients["da0"].shape =", gradients["da0"].shape)
    print("gradients["dWax"][3][1] =", gradients["dWax"][3][1])
    print("gradients["dWax"].shape =", gradients["dWax"].shape)
    print("gradients["dWaa"][1][2] =", gradients["dWaa"][1][2])
    print("gradients["dWaa"].shape =", gradients["dWaa"].shape)
    print("gradients["dba"][4] =", gradients["dba"][4])
    print("gradients["dba"].shape =", gradients["dba"].shape)
    

    【result】

    gradients["dx"][1][2] = [-2.07101689 -0.59255627  0.02466855  0.01483317]
    gradients["dx"].shape = (3, 10, 4)
    gradients["da0"][2][3] = -0.314942375127
    gradients["da0"].shape = (5, 10)
    gradients["dWax"][3][1] = 11.2641044965
    gradients["dWax"].shape = (5, 3)
    gradients["dWaa"][1][2] = 2.30333312658
    gradients["dWaa"].shape = (5, 5)
    gradients["dba"][4] = [-0.74747722]
    gradients["dba"].shape = (5, 1)
    

    Expected Output

    gradients["dx"][1][2] =	[-2.07101689 -0.59255627 0.02466855 0.01483317]
    gradients["dx"].shape =	(3, 10, 4)
    gradients["da0"][2][3] =	-0.314942375127
    gradients["da0"].shape =	(5, 10)
    gradients["dWax"][3][1] =	11.2641044965
    gradients["dWax"].shape =	(5, 3)
    gradients["dWaa"][1][2] =	2.30333312658
    gradients["dWaa"].shape =	(5, 5)
    gradients["dba"][4] =	[-0.74747722]
    gradients["dba"].shape =	(5, 1)
    

      

    3.2 - LSTM backward pass

     

    3.2.1 One Step backward

    The LSTM backward pass is slighltly more complicated than the forward one. We have provided you with all the equations for the LSTM backward pass below. (If you enjoy calculus exercises feel free to try deriving these from scratch yourself.)

    3.2.2 gate derivatives

     注:

    (1)公式(8)中的it代表什么?i代表 Γut⟩  

    (2)公式10中c̃prev  代表 cprev

    (3)上面的*代表element-wise ,即元素乘积

    (4)公式好像有错误

    3.2.3 parameter derivatives

    注: 上面的公式用的是*,即element-wise,这里的公式应该点乘,即np.dot()

    To calculate dbf,dbu,dbc,dbo you just need to sum across the horizontal (axis= 1) axis on dΓft,dΓut,dc̃ t,dΓot respectively. Note that you should have the keep_dims = True option.

    Finally, you will compute the derivative with respect to the previous hidden state, previous memory state, and input.  

    Here, the weights for equations 13 are the first n_a, (i.e. Wf=Wf[:na,:] etc...)

    where the weights for equation 15 are from n_a to the end, (i.e. Wf=Wf[na:,:etc...)

    注:

    (1)上面的公式(15)、(17)用的是*,即element-wise,这里的公式应该点乘,即np.dot()  

    (2)上面的公式(16)用的是*,即element-wise,不用np.dot()

    Exercise: Implement lstm_cell_backward by implementing equations 717 below. Good luck! :)  

    【code】

    def lstm_cell_backward(da_next, dc_next, cache):
        """
        Implement the backward pass for the LSTM-cell (single time-step).
    
        Arguments:
        da_next -- Gradients of next hidden state, of shape (n_a, m)
        dc_next -- Gradients of next cell state, of shape (n_a, m)
        cache -- cache storing information from the forward pass
    
        Returns:
        gradients -- python dictionary containing:
                            dxt -- Gradient of input data at time-step t, of shape (n_x, m)
                            da_prev -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m)
                            dc_prev -- Gradient w.r.t. the previous memory state, of shape (n_a, m, T_x)
                            dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                            dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
                            dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x)
                            dWo -- Gradient w.r.t. the weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
                            dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
                            dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
                            dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1)
                            dbo -- Gradient w.r.t. biases of the output gate, of shape (n_a, 1)
        """
    
        # Retrieve information from "cache"
        (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cache
    
        ### START CODE HERE ###
        # Retrieve dimensions from xt's and a_next's shape (≈2 lines)
        n_x, m = xt.shape
        n_a, m = a_next.shape
    
        # Compute gates related derivatives, you can find their values can be found by looking carefully at equations (7) to (10) (≈4 lines)
        dot = da_next * np.tanh(c_next) * ot * (1 - ot)
        dcct = (dc_next * it + ot * (1 - np.square(np.tanh(c_next))) * it * da_next) * (1 - np.square(cct))
        dit = (dc_next * cct + ot * (1 - np.square(np.tanh(c_next))) * cct * da_next) * it * (1 - it)
        dft = (dc_next * c_prev + ot *(1 - np.square(np.tanh(c_next))) * c_prev * da_next) * ft * (1 - ft)
    
        # 连接矩阵
        concat = np.concatenate((a_prev, xt), axis=0)
    
        # Compute parameters related derivatives. Use equations (11)-(14) (≈8 lines)
        dWf = np.dot(dft, concat.T)
        dWi = np.dot(dit, concat.T)
        dWc = np.dot(dcct, concat.T)
        dWo = np.dot(dot, concat.T)
        dbf = np.sum(dft, axis=1 ,keepdims = True)
        dbi = np.sum(dit, axis=1, keepdims = True)
        dbc = np.sum(dcct, axis=1,  keepdims = True)
        dbo = np.sum(dot, axis=1, keepdims = True)
    
        # Compute derivatives w.r.t previous hidden state, previous memory state and input. Use equations (15)-(17). (≈3 lines)
        # parameters['Wf'][:, :n_a].T 每一行的 第 0 到 n_a-1 列的数据取出来
        # parameters['Wf'][:, n_a:].T 每一行的 第 n_a 到最后列的数据取出来
        da_prev = np.dot(parameters['Wf'][:, :n_a].T, dft) + np.dot(parameters['Wi'][:, :n_a].T, dit) + np.dot(parameters['Wc'][:, :n_a].T, dcct) + np.dot(parameters['Wo'][:, :n_a].T, dot)
        dc_prev = dc_next * ft + ot * (1 - np.square(np.tanh(c_next))) * ft * da_next
        dxt = np.dot(parameters['Wf'][:, n_a:].T, dft) + np.dot(parameters['Wi'][:, n_a:].T, dit) + np.dot(parameters['Wc'][:, n_a:].T, dcct) + np.dot(parameters['Wo'][:, n_a:].T, dot)
        ### END CODE HERE ###
    
        # Save gradients in dictionary
        gradients = {"dxt": dxt, "da_prev": da_prev, "dc_prev": dc_prev, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi,
                    "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo}
    
        return gradients
    

      

    np.random.seed(1)
    xt = np.random.randn(3,10)
    a_prev = np.random.randn(5,10)
    c_prev = np.random.randn(5,10)
    Wf = np.random.randn(5, 5+3)
    bf = np.random.randn(5,1)
    Wi = np.random.randn(5, 5+3)
    bi = np.random.randn(5,1)
    Wo = np.random.randn(5, 5+3)
    bo = np.random.randn(5,1)
    Wc = np.random.randn(5, 5+3)
    bc = np.random.randn(5,1)
    Wy = np.random.randn(2,5)
    by = np.random.randn(2,1)
    
    parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
    
    a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)
    
    da_next = np.random.randn(5,10)
    dc_next = np.random.randn(5,10)
    gradients = lstm_cell_backward(da_next, dc_next, cache)
    print("gradients["dxt"][1][2] =", gradients["dxt"][1][2])
    print("gradients["dxt"].shape =", gradients["dxt"].shape)
    print("gradients["da_prev"][2][3] =", gradients["da_prev"][2][3])
    print("gradients["da_prev"].shape =", gradients["da_prev"].shape)
    print("gradients["dc_prev"][2][3] =", gradients["dc_prev"][2][3])
    print("gradients["dc_prev"].shape =", gradients["dc_prev"].shape)
    print("gradients["dWf"][3][1] =", gradients["dWf"][3][1])
    print("gradients["dWf"].shape =", gradients["dWf"].shape)
    print("gradients["dWi"][1][2] =", gradients["dWi"][1][2])
    print("gradients["dWi"].shape =", gradients["dWi"].shape)
    print("gradients["dWc"][3][1] =", gradients["dWc"][3][1])
    print("gradients["dWc"].shape =", gradients["dWc"].shape)
    print("gradients["dWo"][1][2] =", gradients["dWo"][1][2])
    print("gradients["dWo"].shape =", gradients["dWo"].shape)
    print("gradients["dbf"][4] =", gradients["dbf"][4])
    print("gradients["dbf"].shape =", gradients["dbf"].shape)
    print("gradients["dbi"][4] =", gradients["dbi"][4])
    print("gradients["dbi"].shape =", gradients["dbi"].shape)
    print("gradients["dbc"][4] =", gradients["dbc"][4])
    print("gradients["dbc"].shape =", gradients["dbc"].shape)
    print("gradients["dbo"][4] =", gradients["dbo"][4])
    print("gradients["dbo"].shape =", gradients["dbo"].shape)
    

    【result】

    gradients["dxt"][1][2] = 3.23055911511
    gradients["dxt"].shape = (3, 10)
    gradients["da_prev"][2][3] = -0.0639621419711
    gradients["da_prev"].shape = (5, 10)
    gradients["dc_prev"][2][3] = 0.797522038797
    gradients["dc_prev"].shape = (5, 10)
    gradients["dWf"][3][1] = -0.147954838164
    gradients["dWf"].shape = (5, 8)
    gradients["dWi"][1][2] = 1.05749805523
    gradients["dWi"].shape = (5, 8)
    gradients["dWc"][3][1] = 2.30456216369
    gradients["dWc"].shape = (5, 8)
    gradients["dWo"][1][2] = 0.331311595289
    gradients["dWo"].shape = (5, 8)
    gradients["dbf"][4] = [ 0.18864637]
    gradients["dbf"].shape = (5, 1)
    gradients["dbi"][4] = [-0.40142491]
    gradients["dbi"].shape = (5, 1)
    gradients["dbc"][4] = [ 0.25587763]
    gradients["dbc"].shape = (5, 1)
    gradients["dbo"][4] = [ 0.13893342]
    gradients["dbo"].shape = (5, 1)
    

    Expected Output】  

    gradients["dxt"][1][2] =	3.23055911511
    gradients["dxt"].shape =	(3, 10)
    gradients["da_prev"][2][3] =	-0.0639621419711
    gradients["da_prev"].shape =	(5, 10)
    gradients["dc_prev"][2][3] =	0.797522038797
    gradients["dc_prev"].shape =	(5, 10)
    gradients["dWf"][3][1] =	-0.147954838164
    gradients["dWf"].shape =	(5, 8)
    gradients["dWi"][1][2] =	1.05749805523
    gradients["dWi"].shape =	(5, 8)
    gradients["dWc"][3][1] =	2.30456216369
    gradients["dWc"].shape =	(5, 8)
    gradients["dWo"][1][2] =	0.331311595289
    gradients["dWo"].shape =	(5, 8)
    gradients["dbf"][4] =	[ 0.18864637]
    gradients["dbf"].shape =	(5, 1)
    gradients["dbi"][4] =	[-0.40142491]
    gradients["dbi"].shape =	(5, 1)
    gradients["dbc"][4] =	[ 0.25587763]
    gradients["dbc"].shape =	(5, 1)
    gradients["dbo"][4] =	[ 0.13893342]
    gradients["dbo"].shape =	(5, 1)
    

      

    3.3 Backward pass through the LSTM RNN

    This part is very similar to the rnn_backward function you implemented above. You will first create variables of the same dimension as your return variables. You will then iterate over all the time steps starting from the end and call the one step function you implemented for LSTM at each iteration. You will then update the parameters by summing them individually. Finally return a dictionary with the new gradients.

    Instructions: Implement the lstm_backward function. Create a for loop starting from Tx and going backward. For each step call lstm_cell_backward and update the your old gradients by adding the new gradients to them. Note that dxt is not updated but is stored.

    【中文翻译】

    3.3 LSTM RNN 的反向传播
    这部分与您在上面实现的 rnn_backward 函数非常相似。您将首先创建与返回变量相同的维度的变量。然后, 您将循环访问从末尾开始的所有时间步, 并调用在每次迭代中调用为 LSTM 实现的one step函数。然后, 您将通过分别对参数进行求和来更新它们。最后返回一个具有新梯度的字典。
     
    说明: 实现 lstm_backward 函数。创建一个 for 循环, 从 Tx 开始, 然后向后走。对于每个步骤调用 lstm_cell_backward, 并通过向它们添加新梯度来更新旧的梯度。请注意, dxt 未更新, 但已存储。

    【code】

    def lstm_backward(da, caches):
    
        """
        Implement the backward pass for the RNN with LSTM-cell (over a whole sequence).
    
        Arguments:
        da -- Gradients w.r.t the hidden states, numpy-array of shape (n_a, m, T_x)
        dc -- Gradients w.r.t the memory states, numpy-array of shape (n_a, m, T_x)
        caches -- cache storing information from the forward pass (lstm_forward)
    
        Returns:
        gradients -- python dictionary containing:
                            dx -- Gradient of inputs, of shape (n_x, m, T_x)
                            da0 -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m)
                            dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
                            dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
                            dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x)
                            dWo -- Gradient w.r.t. the weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x)
                            dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
                            dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
                            dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1)
                            dbo -- Gradient w.r.t. biases of the save gate, of shape (n_a, 1)
        """
    
        # Retrieve values from the first cache (t=1) of caches.
        (caches, x) = caches
        (a1, c1, a0, c0, f1, i1, cc1, o1, x1, parameters) = caches[0]
    
        ### START CODE HERE ###
        # Retrieve dimensions from da's and x1's shapes (≈2 lines)
        n_a, m, T_x = da.shape
        n_x, m = x1.shape
    
        # initialize the gradients with the right sizes (≈12 lines)
        dx = np.zeros((n_x, m, T_x))
        da0 = np.zeros((n_a, m))
        da_prevt = np.zeros((n_a, m))
        dc_prevt = np.zeros((n_a, m))
        dWf = np.zeros((n_a, n_a + n_x))
        dWi = np.zeros((n_a, n_a + n_x))
        dWc = np.zeros((n_a, n_a + n_x))
        dWo = np.zeros((n_a, n_a + n_x))
        dbf = np.zeros((n_a, 1))
        dbi = np.zeros((n_a, 1))
        dbc = np.zeros((n_a, 1))
        dbo = np.zeros((n_a, 1))
    
    
    
        # loop back over the whole sequence
        for t in reversed(range(T_x)):
            # Compute all gradients using lstm_cell_backward
            gradients = lstm_cell_backward(da[:, :, t], dc_prevt, caches[t])
            # Store or add the gradient to the parameters' previous step's gradient
            dx[:,:,t] = gradients["dxt"]
            dWf += gradients["dWf"]
            dWi += gradients["dWi"]
            dWc += gradients["dWc"]
            dWo += gradients["dWo"]
            dbf += gradients["dbf"]
            dbi += gradients["dbi"]     #输出值与期望值不一致
            dbc += gradients["dbc"]     #输出值与期望值不一致
            dbo += gradients["dbo"]     #输出值与期望值不一致
        # Set the first activation's gradient to the backpropagated gradient da_prev.
        da0 = gradients["da_prev"]
    
        ### END CODE HERE ###
    
        # Store the gradients in a python dictionary
        gradients = {"dx": dx, "da0": da0, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi,
                    "dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo}
    
        return gradients
    

      

    np.random.seed(1)
    x = np.random.randn(3,10,7)
    a0 = np.random.randn(5,10)
    Wf = np.random.randn(5, 5+3)
    bf = np.random.randn(5,1)
    Wi = np.random.randn(5, 5+3)
    bi = np.random.randn(5,1)
    Wo = np.random.randn(5, 5+3)
    bo = np.random.randn(5,1)
    Wc = np.random.randn(5, 5+3)
    bc = np.random.randn(5,1)
    
    parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
    
    a, y, c, caches = lstm_forward(x, a0, parameters)
    
    da = np.random.randn(5, 10, 4)
    gradients = lstm_backward(da, caches)
    
    print("gradients["dx"][1][2] =", gradients["dx"][1][2])
    print("gradients["dx"].shape =", gradients["dx"].shape)
    print("gradients["da0"][2][3] =", gradients["da0"][2][3])
    print("gradients["da0"].shape =", gradients["da0"].shape)
    print("gradients["dWf"][3][1] =", gradients["dWf"][3][1])
    print("gradients["dWf"].shape =", gradients["dWf"].shape)
    print("gradients["dWi"][1][2] =", gradients["dWi"][1][2])
    print("gradients["dWi"].shape =", gradients["dWi"].shape)
    print("gradients["dWc"][3][1] =", gradients["dWc"][3][1])
    print("gradients["dWc"].shape =", gradients["dWc"].shape)
    print("gradients["dWo"][1][2] =", gradients["dWo"][1][2])
    print("gradients["dWo"].shape =", gradients["dWo"].shape)
    print("gradients["dbf"][4] =", gradients["dbf"][4])
    print("gradients["dbf"].shape =", gradients["dbf"].shape)
    print("gradients["dbi"][4] =", gradients["dbi"][4])
    print("gradients["dbi"].shape =", gradients["dbi"].shape)
    print("gradients["dbc"][4] =", gradients["dbc"][4])
    print("gradients["dbc"].shape =", gradients["dbc"].shape)
    print("gradients["dbo"][4] =", gradients["dbo"][4])
    print("gradients["dbo"].shape =", gradients["dbo"].shape)
    

    【result】

    gradients["dx"][1][2] = [-0.00173313  0.08287442 -0.30545663 -0.43281115]
    gradients["dx"].shape = (3, 10, 4)
    gradients["da0"][2][3] = -0.095911501954
    gradients["da0"].shape = (5, 10)
    gradients["dWf"][3][1] = -0.0698198561274
    gradients["dWf"].shape = (5, 8)
    gradients["dWi"][1][2] = 0.102371820249
    gradients["dWi"].shape = (5, 8)
    gradients["dWc"][3][1] = -0.0624983794927
    gradients["dWc"].shape = (5, 8)
    gradients["dWo"][1][2] = 0.0484389131444
    gradients["dWo"].shape = (5, 8)
    gradients["dbf"][4] = [-0.0565788]
    gradients["dbf"].shape = (5, 1)
    gradients["dbi"][4] = [-0.01339511]
    gradients["dbi"].shape = (5, 1)
    gradients["dbc"][4] = [-0.21783941]
    gradients["dbc"].shape = (5, 1)
    gradients["dbo"][4] = [ 0.22190701]
    gradients["dbo"].shape = (5, 1)
    

    Expected Output】  

     

    gradients["dx"][1][2] =	[-0.00173313 0.08287442 -0.30545663 -0.43281115]
    gradients["dx"].shape =	(3, 10, 4)
    gradients["da0"][2][3] =	-0.095911501954
    gradients["da0"].shape =	(5, 10)
    gradients["dWf"][3][1] =	-0.0698198561274
    gradients["dWf"].shape =	(5, 8)
    gradients["dWi"][1][2] =	0.102371820249
    gradients["dWi"].shape =	(5, 8)
    gradients["dWc"][3][1] =	-0.0624983794927
    gradients["dWc"].shape =	(5, 8)
    gradients["dWo"][1][2] =	0.0484389131444
    gradients["dWo"].shape =	(5, 8)
    gradients["dbf"][4] =	[-0.0565788]
    gradients["dbf"].shape =	(5, 1)
    gradients["dbi"][4] =	[-0.06997391]
    gradients["dbi"].shape =	(5, 1)
    gradients["dbc"][4] =	[-0.27441821]
    gradients["dbc"].shape =	(5, 1)
    gradients["dbo"][4] =	[ 0.16532821]
    gradients["dbo"].shape =	(5, 1)
    

      

    Congratulations !

    Congratulations on completing this assignment. You now understand how recurrent neural networks work!

    Lets go on to the next exercise, where you'll use an RNN to build a character-level language model.

     --------------------------------------------------------

    参考链接:

      1、http://blog.csdn.net/JUNJUN_ZHAO/article/details/79400107

  • 相关阅读:
    powerdesigner与数据库之间的连接
    D9-Android自定义控件之动画篇1-ObjectAnimator
    01-React搭建react环境及SCSS的配置
    开源计划之--Android绘图库--LogicCanvas
    5-VVI-材料设计之ToolBar
    4-VVI-材料设计之沉浸标题栏和TextInputLayout
    D8-Android自定义控件之DotNum及item复用问题
    O3-开源框架使用之Butterknife 8.8.1及源码浅析
    TIII-Android技术篇之反射
    TVI-Android技术篇之注解Annotation
  • 原文地址:https://www.cnblogs.com/hezhiyao/p/8488878.html
Copyright © 2020-2023  润新知