• 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) ——3.Programming assignments : Residual Networks


    Residual Networks

    Welcome to the second assignment of this week! You will learn how to build very deep convolutional networks, using Residual Networks (ResNets). In theory, very deep networks can represent very complex functions; but in practice, they are hard to train. Residual Networks, introduced by He et al., allow you to train much deeper networks than were previously practically feasible.

    In this assignment, you will:

    • Implement the basic building blocks of ResNets.
    • Put together these building blocks to implement and train a state-of-the-art neural network for image classification.

    This assignment will be done in Keras.

    【中文翻译】

    欢迎来到第二次任务!您将学习如何使用Residual 网络 (ResNets) 构建非常深的卷积网络。理论上, 非常网络可以代表非常复杂的函数;但在实践中, 它们很难训练。 由He 等提出的Residual网络, 允许你训练更深的网络。
    在此任务, :
    • 实现 ResNets 的基本构件。
    • 把这些构件放在一起, 实现并训练一种state-of-the-art 神经网络进行图像分类。
    这项任务将在 Keras 中完成。

     

    Before jumping into the problem, let's run the cell below to load the required packages.

    【code】

    import numpy as np
    from keras import layers
    from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
    from keras.models import Model, load_model
    from keras.preprocessing import image
    from keras.utils import layer_utils
    from keras.utils.data_utils import get_file
    from keras.applications.imagenet_utils import preprocess_input
    import pydot
    from IPython.display import SVG
    from keras.utils.vis_utils import model_to_dot
    from keras.utils import plot_model
    from resnets_utils import *
    from keras.initializers import glorot_uniform
    import scipy.misc
    from matplotlib.pyplot import imshow
    %matplotlib inline
    
    import keras.backend as K
    K.set_image_data_format('channels_last')
    K.set_learning_phase(1)
    

    1 - The problem of very deep neural networks

    Last week, you built your first convolutional neural network. In recent years, neural networks have become deeper, with state-of-the-art networks going from just a few layers (e.g., AlexNet) to over a hundred layers.

    The main benefit of a very deep network is that it can represent very complex functions. It can also learn features at many different levels of abstraction, from edges (at the lower layers) to very complex features (at the deeper layers). However, using a deeper network doesn't always help. A huge barrier to training them is vanishing gradients: very deep networks often have a gradient signal that goes to zero quickly, thus making gradient descent unbearably slow. More specifically, during gradient descent, as you backprop from the final layer back to the first layer, you are multiplying by the weight matrix on each step, and thus the gradient can decrease exponentially quickly to zero (or, in rare cases, grow exponentially quickly and "explode" to take very large values).

    During training, you might therefore see the magnitude (or norm) of the gradient for the earlier layers descrease to zero very rapidly as training proceeds:

    You are now going to solve this problem by building a Residual Network!

    【中文翻译】

    上周, 你建立了你的第一个卷积神经网络。近年来, 神经网络已经变得更深了, 如state-of-the-art 网络, 从短短的几层到(如, AlexNet) 超过100层。
     
    一个非常深的网络的主要好处是它可以代表非常复杂的函数。它还可以在许多不同的抽象层次上学习特征, 从边缘 (在底层) 到非常复杂的特征 (在更深的层)。但是, 使用更深的网络并不总是有帮助。训练它们的一个巨大障碍是消失的梯度( vanishing gradients): 非常深的网络通常有一个梯度信号, 它很快地变成0, 从而使梯度下降变得很缓慢。具体地说, 在梯度下降期间, 最后返回第一时, 将在每个步骤乘以权重矩阵因此梯度可以指数速度快速减少 (或者, 极少数情况下, 增长迅速,增长到很大的值)。
     
    训练期间, 可能因此看见,在前面的层中,随着训练的继续,梯度大小 (范数) 非常快速地减少零:
    图片见英文部分

    现在通过建立一个 Residual网络解决这个问题!

    2 - Building a Residual Network

    In ResNets, a "shortcut" or a "skip connection" allows the gradient to be directly backpropagated to earlier layers:

    The image on the left shows the "main path" through the network. The image on the right adds a shortcut to the main path. By stacking these ResNet blocks on top of each other, you can form a very deep network.

    We also saw in lecture that having ResNet blocks with the shortcut also makes it very easy for one of the blocks to learn an identity function. This means that you can stack on additional ResNet blocks with little risk of harming training set performance. (There is also some evidence that the ease of learning an identity function--even more than skip connections helping with vanishing gradients--accounts for ResNets' remarkable performance.)

    Two main types of blocks are used in a ResNet, depending mainly on whether the input/output dimensions are same or different. You are going to implement both of them.

    【中文翻译】

     ResNets , "捷径"  "跳跃连接" 允许将梯度直接 反向传播更早:

    左侧的图像通过网络显示 "主路径"。右侧的图像为主路径添加了一个捷径。通过堆叠这些 ResNet 块在彼此之上, 您可以形成一个非常深的网络。
    图片见英文部分
    我们还在讲座中看到, 使用捷径的ResNet 块也使其中一个块学习恒等函数变得非常容易。这意味着您可以在额外的 ResNet 块上叠加, 而不会危害训练集的性能。(还有一些证据表明, 学习一个恒等函数的简单性,甚至比跳跃连接对梯度消失的缓解更有帮助,这些证明了ResNets 的卓越性能。
     
    ResNet 中使用了两种主要类型的块, 主要取决于输入/输出维度是否相同或不同。你要实现这两个。

    2.1 - The identity block

    The identity block is the standard block used in ResNets, and corresponds to the case where the input activation (say a[l]) has the same dimension as the output activation (say a[l+2]). To flesh out the different steps of what happens in a ResNet's identity block, here is an alternative diagram showing the individual steps:

     

    The upper path is the "shortcut path." The lower path is the "main path." In this diagram, we have also made explicit the CONV2D and ReLU steps in each layer. To speed up training we have also added a BatchNorm step. Don't worry about this being complicated to implement--you'll see that BatchNorm is just one line of code in Keras!

    In this exercise, you'll actually implement a slightly more powerful version of this identity block, in which the skip connection "skips over" 3 hidden layers rather than 2 layers. It looks like this:

    Here're the individual steps.

    First component of main path:

    • The first CONV2D has F1 filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and its name should be conv_name_base + '2a'. Use 0 as the seed for the random initialization.
    • The first BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2a'.
    • Then apply the ReLU activation function. This has no name and no hyperparameters.

    Second component of main path:

    • The second CONV2D has F2F2 filters of shape (f,f)(f,f) and a stride of (1,1). Its padding is "same" and its name should be conv_name_base + '2b'. Use 0 as the seed for the random initialization.
    • The second BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2b'.
    • Then apply the ReLU activation function. This has no name and no hyperparameters.

    Third component of main path:

    • The third CONV2D has F3F3 filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and its name should be conv_name_base + '2c'. Use 0 as the seed for the random initialization.
    • The third BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2c'. Note that there is no ReLU activation function in this component.

    Final step:

    • The shortcut and the input are added together.
    • Then apply the ReLU activation function. This has no name and no hyperparameters.

    【中文翻译】

    2.1 - 恒等模块

    恒等模块是 ResNets 中使用的标准块, 对应于输入激活 (例如, a [l]) 与输出激活具有相同维度的情况 (例如, a [l + 2])。为了使 ResNet 的恒等模不同步骤更加明显, 这里一个可选图表显示各个步骤:

     

    上面的路径是 "捷径"。下面的路径是 "主路径"。在这个图中, 我们还明确了每个层中的 CONV2D 和 ReLU 步骤。为了加快训练, 我们也增加了一个 BatchNorm 的步骤。不要担心复杂实现-看到, 在 Keras中,BatchNorm 只是一行代码! 

    在本练习中, 您将实际实现这个恒等模块的一个稍微更强大的版本, 其中跳跃连接 "跳过" 3 隐藏层, 而不是2层。看起来这样:

     

    下面是各个步骤。
    路径第一个组件:
    • 第一 CONV2D 有 F1 个滤波器,形状为 (1,1) 和步幅为 (1,1)。其填充为 "valid", 其名称应为 conv_name_base + "2a"。使用0作为随机初始化的种子。
    • 第一个 BatchNorm 是对通道轴进行规范化。它的名字应该是 bn_name_base + "2a"。
    • 然后应用 ReLU 激活函数。没有名字没有参数
    路径第二个组成部分:
    • 第二 CONV2D 有 F2个滤波器, 形状为(f,f) 和步幅 (1,1)。它的填充方式是 "same", 其名称应该是 conv_name_base + "2b"。使用0作为随机初始化的种子。
    • 第二个 BatchNorm 是对通道轴进行规范化。它的名字应该是 bn_name_base + "2b"。
    • 然后应用 ReLU 激活函数。没有名字没有参数
    路径第三个组成部分:
    • 第三 CONV2D 有 F3个滤波器 ,形状为(1,1) 和步幅 (1,1)。其填充为 "same", 其名称应为 conv_name_base + "2c"。使用0作为随机初始化的种子。
    • 第三个 BatchNorm 对通道轴进行规范化。它的名字应该是 bn_name_base + "2c"。请注意, 此组件中没有 ReLU 激活函数。
     
    最后一步:
    • 捷径和输入一起添加。
    • 然后应用 ReLU 激活函数。没有名字没有参数

    Exercise: Implement the ResNet identity block. We have implemented the first component of the main path. Please read over this carefully to make sure you understand what it is doing. You should implement the rest.

    • To implement the Conv2D step: See reference
    • To implement BatchNorm: See reference (axis: Integer, the axis that should be normalized (typically the channels axis))
    • For the activation, use: Activation('relu')(X)
    • To add the value passed forward by the shortcut: See reference

    【中文翻译】

    练习: 实现 ResNet 恒等块。我们已经实现了主路径的第一个组成部分。请仔细阅读这一点, 以确保您了解它在做什么。你应该实现剩下的。
    • 实现 Conv2D 步骤: 请参阅参考
    • 实现 BatchNorm: 请参见参考 (: 整数, 规范化 (通常通道))
    • 对于激活, 使用:  Activation('relu')(X)
    • 添加由捷径向前传递: 请参阅参考

    【code】

    # GRADED FUNCTION: identity_block
    
    def identity_block(X, f, filters, stage, block):
        """
        Implementation of the identity block as defined in Figure 3
        
        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        f -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        
        Returns:
        X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
        """
        
        # defining name basis
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
        
        # Retrieve Filters
        F1, F2, F3 = filters
        
        # Save the input value. You'll need this later to add back to the main path. 
        X_shortcut = X
        
        # First component of main path
        # Glorot均匀分布初始化方法,又成Xavier均匀初始化,参数从[-limit, limit]的均匀分布产生,其中limit为sqrt(6 / (fan_in + fan_out))。fan_in为权值张量的输入单元数,fan_out是权重张量的输出单元数。
        X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
        X = Activation('relu')(X)
        
        ### START CODE HERE ###
        
        # Second component of main path (≈3 lines)
        X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
        X = Activation('relu')(X)
    
        # Third component of main path (≈2 lines)
        X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
    
        # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
        X = Add()([X_shortcut, X] ) 
        X = Activation('relu')(X)
        
        ### END CODE HERE ###
        
        return X
    
    tf.reset_default_graph()
    
    with tf.Session() as test:
        np.random.seed(1)
        A_prev = tf.placeholder("float", [3, 4, 4, 6])
        X = np.random.randn(3, 4, 4, 6)
        A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
        test.run(tf.global_variables_initializer())
        out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
        print("out = " + str(out[0][1][1][0]))
    

    【result】  

    out = [ 0.94822985  0.          1.16101444  2.747859    0.          1.36677003]
    

    Expected Output:

    out [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003]

      

    2.2 - The convolutional block

    You've implemented the ResNet identity block. Next, the ResNet "convolutional block" is the other type of block. You can use this type of block when the input and output dimensions don't match up. The difference with the identity block is that there is a CONV2D layer in the shortcut path:

    The CONV2D layer in the shortcut path is used to resize the input xx to a different dimension, so that the dimensions match up in the final addition needed to add the shortcut value back to the main path. (This plays a similar role as the matrix WsWs discussed in lecture.) For example, to reduce the activation dimensions's height and width by a factor of 2, you can use a 1x1 convolution with a stride of 2. The CONV2D layer on the shortcut path does not use any non-linear activation function. Its main role is to just apply a (learned) linear function that reduces the dimension of the input, so that the dimensions match up for the later addition step.

    The details of the convolutional block are as follows.

    First component of main path:

    • The first CONV2D has F1F1 filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be conv_name_base + '2a'.
    • The first BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2a'.
    • Then apply the ReLU activation function. This has no name and no hyperparameters.

    Second component of main path:

    • The second CONV2D has F2F2 filters of (f,f) and a stride of (1,1). Its padding is "same" and it's name should be conv_name_base + '2b'.
    • The second BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2b'.
    • Then apply the ReLU activation function. This has no name and no hyperparameters.

    Third component of main path:

    • The third CONV2D has F3F3 filters of (1,1) and a stride of (1,1). Its padding is "valid" and it's name should be conv_name_base + '2c'.
    • The third BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '2c'. Note that there is no ReLU activation function in this component.

    Shortcut path:

    • The CONV2D has F3F3 filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be conv_name_base + '1'.
    • The BatchNorm is normalizing the channels axis. Its name should be bn_name_base + '1'.

    Final step:

    • The shortcut and the main path values are added together.
    • Then apply the ReLU activation function. This has no name and no hyperparameters.

    Exercise: Implement the convolutional block. We have implemented the first component of the main path; you should implement the rest. As before, always use 0 as the seed for the random initialization, to ensure consistency with our grader.

    【code】

    # GRADED FUNCTION: convolutional_block
    
    def convolutional_block(X, f, filters, stage, block, s = 2):
        """
        Implementation of the convolutional block as defined in Figure 4
        
        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        f -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        s -- Integer, specifying the stride to be used
        
        Returns:
        X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
        """
        
        # defining name basis
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
        
        # Retrieve Filters
        F1, F2, F3 = filters
        
        # Save the input value
        X_shortcut = X
    
    
        ##### MAIN PATH #####
        # First component of main path 
        X = Conv2D(filters = F1,  kernel_size =(1, 1), strides = (s,s), name = conv_name_base + '2a', padding='valid', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
        X = Activation('relu')(X)
        
        ### START CODE HERE ###
    
        # Second component of main path (≈3 lines)
        X = Conv2D(filters = F2,  kernel_size =(f, f), strides = (1, 1), name = conv_name_base + '2b',padding='same', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
        X = Activation('relu')(X)
    
        # Third component of main path (≈2 lines)
        X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1, 1), name = conv_name_base + '2c',padding='valid', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
    
        ##### SHORTCUT PATH #### (≈2 lines)
        X_shortcut = Conv2D(filters = F3, kernel_size = (1, 1), strides = (s, s), name = conv_name_base + '1',padding='valid', kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
        X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut)
    
        # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
        X = layers.add([X, X_shortcut])
        X = Activation('relu')(X)
        
        ### END CODE HERE ###
        
        return X
    
    tf.reset_default_graph()
    
    with tf.Session() as test:
        np.random.seed(1)
        A_prev = tf.placeholder("float", [3, 4, 4, 6])
        X = np.random.randn(3, 4, 4, 6)
        A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
        test.run(tf.global_variables_initializer())
        out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
        print("out = " + str(out[0][1][1][0]))
    

    【result】  

    out = [ 0.09018463  1.23489773  0.46822017  0.0367176   0.          0.65516603]
    

    Expected Output:

    out [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603]

    3 - Building your first ResNet model (50 layers)

    You now have the necessary blocks to build a very deep ResNet. The following figure describes in detail the architecture of this neural network. "ID BLOCK" in the diagram stands for "Identity block," and "ID BLOCK x3" means you should stack 3 identity blocks together.

    The details of this ResNet-50 model are:

    • Zero-padding pads the input with a pad of (3,3)
    • Stage 1:
      • The 2D Convolution has 64 filters of shape (7,7) and uses a stride of (2,2). Its name is "conv1".
      • BatchNorm is applied to the channels axis of the input.
      • MaxPooling uses a (3,3) window and a (2,2) stride.
    • Stage 2:
      • The convolutional block uses three set of filters of size [64,64,256], "f" is 3, "s" is 1 and the block is "a".  # 这里的[64,64,256] 是指组录波器的个数,即第一组64个,第二组64个,第三组256个
      • The 2 identity blocks use three set of filters of size [64,64,256], "f" is 3 and the blocks are "b" and "c".
    • Stage 3:
      • The convolutional block uses three set of filters of size [128,128,512], "f" is 3, "s" is 2 and the block is "a".
      • The 3 identity blocks use three set of filters of size [128,128,512], "f" is 3 and the blocks are "b", "c" and "d".
    • Stage 4:
      • The convolutional block uses three set of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a".
      • The 5 identity blocks use three set of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".
    • Stage 5:
      • The convolutional block uses three set of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a".
      • The 2 identity blocks use three set of filters of size [512, 512, 2048], "f" is 3 and the blocks are "b" and "c".
    • The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".
    • The flatten doesn't have any hyperparameters or name.
    • The Fully Connected (Dense) layer reduces its input to the number of classes using a softmax activation. Its name should be 'fc' + str(classes).

    Exercise: Implement the ResNet with 50 layers described in the figure above. We have implemented Stages 1 and 2. Please implement the rest. (The syntax for implementing Stages 3-5 should be quite similar to that of Stage 2.) Make sure you follow the naming convention in the text above.

    You'll need to use this function:

    Here're some other functions we used in the code below:

    【code】

    # GRADED FUNCTION: ResNet50
    
    def ResNet50(input_shape = (64, 64, 3), classes = 6):
        """
        Implementation of the popular ResNet50 the following architecture:
        CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
        -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER
    
        Arguments:
        input_shape -- shape of the images of the dataset
        classes -- integer, number of classes
    
        Returns:
        model -- a Model() instance in Keras
        """
        
        # Define the input as a tensor with shape input_shape
        X_input = Input(input_shape)
    
        
        # Zero-Padding
        X = ZeroPadding2D( padding=(3, 3) )(X_input)
        
        # Stage 1
        #T he 2D Convolution has 64 filters of shape (7,7) and uses a stride of (2,2). Its name is "conv1".
        #B atchNorm is applied to the channels axis of the input.
        # MaxPooling uses a (3,3) window and a (2,2) stride.
        X = Conv2D(filters=64, kernel_size=(7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
        X = Activation('relu')(X)
        X = MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(X)
    
        # Stage 2
        # The convolutional block uses three set of filters of size [64,64,256], "f" is 3, "s" is 1 and the block is "a".
        # The 2 identity blocks use three set of filters of size [64,64,256], "f" is 3 and the blocks are "b" and "c".
        X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
        X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
        X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
    
        ### START CODE HERE ###
    
        # Stage 3 (≈4 lines)
        # The convolutional block uses three set of filters of size [128,128,512], "f" is 3, "s" is 2 and the block is "a".
        # The 3 identity blocks use three set of filters of size [128,128,512], "f" is 3 and the blocks are "b", "c" and "d".
        X = convolutional_block(X, f = 3, filters = [128,128,512], stage = 3, block='a', s = 2)
        X = identity_block(X, 3, [128,128,512], stage=3, block='b')
        X = identity_block(X, 3, [128,128,512], stage=3, block='c')
        X = identity_block(X, 3, [128,128,512], stage=3, block='d')
    
        # Stage 4 (≈6 lines)
        # The convolutional block uses three set of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a".
        # The 5 identity blocks use three set of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".
        X = convolutional_block(X, f = 3, filters = [256,256,1024], stage = 4, block='a', s = 2)
        X = identity_block(X, 3, [256,256,1024], stage=4, block='b')
        X = identity_block(X, 3, [256,256,1024], stage=4, block='c')
        X = identity_block(X, 3, [256,256,1024], stage=4, block='d')
        X = identity_block(X, 3, [256,256,1024], stage=4, block='e')
        X = identity_block(X, 3, [256,256,1024], stage=4, block='f')
    
        # Stage 5 (≈3 lines)
        # The convolutional block uses three set of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a".
        # The 2 identity blocks use three set of filters of size [512, 512, 2048], "f" is 3 and the blocks are "b" and "c".
        X = convolutional_block(X, f = 3, filters = [512,512,2048], stage = 5, block='a', s = 2)
        X = identity_block(X, 3, [512,512,2048], stage=5, block='b')
        X = identity_block(X, 3, [512,512,2048], stage=5, block='c')
    
        # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
        # The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".
        X = AveragePooling2D(pool_size=(2,2),name='avg_pool')(X)
        
        ### END CODE HERE ###
    
        # output layer
        # The flatten doesn't have any hyperparameters or name.
        X = Flatten()(X)
        # The Fully Connected (Dense) layer reduces its input to the number of classes using a softmax activation. Its name should be 'fc' + str(classes).
        X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
        
        
        # Create model
        model = Model(inputs = X_input, outputs = X, name='ResNet50')
    
        return model
    

    Run the following code to build the model's graph. If your implementation is not correct you will know it by checking your accuracy when running model.fit(...)below.  

    【code】

    model = ResNet50(input_shape = (64, 64, 3), classes = 6)
    

    【reuslt】

    64
    64
    128
    128
    128
    256
    256
    256
    256
    256
    512
    512
    

    As seen in the Keras Tutorial Notebook, prior training a model, you need to configure the learning process by compiling the model.  

    【code】

    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    

    The model is now ready to be trained. The only thing you need is a dataset.

    Let's load the SIGNS Dataset.

    【code】

    X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
    
    # Normalize image vectors
    X_train = X_train_orig/255.
    X_test = X_test_orig/255.
    
    # Convert training and test labels to one hot matrices
    Y_train = convert_to_one_hot(Y_train_orig, 6).T
    Y_test = convert_to_one_hot(Y_test_orig, 6).T
    
    print ("number of training examples = " + str(X_train.shape[0]))
    print ("number of test examples = " + str(X_test.shape[0]))
    print ("X_train shape: " + str(X_train.shape))
    print ("Y_train shape: " + str(Y_train.shape))
    print ("X_test shape: " + str(X_test.shape))
    print ("Y_test shape: " + str(Y_test.shape))
    

    Run the following cell to train your model on 2 epochs with a batch size of 32. On a CPU it should take you around 5min per epoch. 

    【code】

    model.fit(X_train, Y_train, epochs = 2, batch_size = 32)

    【result】

    Epoch 1/2
    1080/1080 [==============================] - 252s - loss: 2.9556 - acc: 0.2528   
    Epoch 2/2
    1080/1080 [==============================] - 243s - loss: 2.0568 - acc: 0.3546   
    

    Expected Output:

    Epoch 1/2 loss: between 1 and 5, acc: between 0.2 and 0.5, although your results can be different from ours.
    Epoch 2/2 loss: between 1 and 5, acc: between 0.2 and 0.5, you should see your loss decreasing and the accuracy increasing.

    Let's see how this model (trained on only two epochs) performs on the test set.  

    【code】

    preds = model.evaluate(X_test, Y_test)
    print ("Loss = " + str(preds[0]))
    print ("Test Accuracy = " + str(preds[1]))
    

    【result】

    120/120 [==============================] - 9s     
    Loss = 2.44362594287
    Test Accuracy = 0.166666666667
    

    Expected Output:

    Test Accuracy between 0.16 and 0.25

     

    For the purpose of this assignment, we've asked you to train the model only for two epochs. You can see that it achieves poor performances. Please go ahead and submit your assignment; to check correctness, the online grader will run your code only for a small number of epochs as well.  

    After you have finished this official (graded) part of this assignment, you can also optionally train the ResNet for more iterations, if you want. We get a lot better performance when we train for ~20 epochs, but this will take more than an hour when training on a CPU.

    Using a GPU, we've trained our own ResNet50 model's weights on the SIGNS dataset. You can load and run our trained model on the test set in the cells below. It may take ≈1min to load the model.

    【code】

    model = load_model('ResNet50.h5') 
    
    preds = model.evaluate(X_test, Y_test)
    print ("Loss = " + str(preds[0]))
    print ("Test Accuracy = " + str(preds[1]))
    

    【result】

    120/120 [==============================] - 10s    
    Loss = 0.530178320408
    Test Accuracy = 0.866666662693
    

    ResNet50 is a powerful model for image classification when it is trained for an adequate number of iterations. We hope you can use what you've learnt and apply it to your own classification problem to perform state-of-the-art accuracy.

    Congratulations on finishing this assignment! You've now implemented a state-of-the-art image classification system! 

    ---------------------------------------------------------------------

    【附上博主在GPU上迭代15次的结果】

    【code】

    model.fit(X_train, Y_train, epochs = 15, batch_size = 32) 

    【result】

    Epoch 1/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.6240 - acc: 0.7907
    Epoch 2/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.4734 - acc: 0.8546
    Epoch 3/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.5105 - acc: 0.8167
    Epoch 4/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.1817 - acc: 0.9500
    Epoch 5/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0998 - acc: 0.9731
    Epoch 6/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.1620 - acc: 0.9565
    Epoch 7/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0776 - acc: 0.9713
    Epoch 8/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0366 - acc: 0.9880
    Epoch 9/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0652 - acc: 0.9769
    Epoch 10/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0461 - acc: 0.9852
    Epoch 11/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0260 - acc: 0.9954
    Epoch 12/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0351 - acc: 0.9935
    Epoch 13/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0286 - acc: 0.9907
    Epoch 14/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0078 - acc: 0.9981
    Epoch 15/15
    1080/1080 [==============================] - 3s 3ms/step - loss: 0.0209 - acc: 0.9972
    
    Out[23]:
    <keras.callbacks.History at 0x1cc25bc8da0>

    Let's see how this model (trained on 20 epochs) performs on the test set. 

    【code】

    preds = model.evaluate(X_test, Y_test)
    print ("Loss = " + str(preds[0]))
    print ("Test Accuracy = " + str(preds[1]))
    

    【result】

    120/120 [==============================] - 0s 920us/step
    Loss = 0.029553125736614068
    Test Accuracy = 0.9916666666666667

    ---------------------------------------------------------------------

    4 - Test on your own image (Optional/Ungraded)

     

    If you wish, you can also take a picture of your own hand and see the output of the model. To do this:

    1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub.
    2. Add your image to this Jupyter Notebook's directory, in the "images" folder
    3. Write your image's name in the following code
    4. Run the code and check if the algorithm is right! 


    【code】

    img_path = 'images/my_image.jpg'
    img = image.load_img(img_path, target_size=(64, 64))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)
    my_image = scipy.misc.imread(img_path)
    imshow(my_image)
    print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ")
    print(model.predict(x))
    

    【result】

    Input image shape: (1, 64, 64, 3)
    class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = 
    [[  1.46631777e-01   3.87719716e-03   8.47503722e-01   9.83841746e-05
        5.38978667e-04   1.34998769e-03]]
    

    You can also print a summary of your model by running the following code.

    【code】

    model.summary()
    

    【result】

    ____________________________________________________________________________________________________
    Layer (type)                     Output Shape          Param #     Connected to                     
    ====================================================================================================
    input_1 (InputLayer)             (None, 64, 64, 3)     0                                            
    ____________________________________________________________________________________________________
    zero_padding2d_1 (ZeroPadding2D) (None, 70, 70, 3)     0           input_1[0][0]                    
    ____________________________________________________________________________________________________
    conv1 (Conv2D)                   (None, 32, 32, 64)    9472        zero_padding2d_1[0][0]           
    ____________________________________________________________________________________________________
    bn_conv1 (BatchNormalization)    (None, 32, 32, 64)    256         conv1[0][0]                      
    ____________________________________________________________________________________________________
    activation_4 (Activation)        (None, 32, 32, 64)    0           bn_conv1[0][0]                   
    ____________________________________________________________________________________________________
    max_pooling2d_1 (MaxPooling2D)   (None, 15, 15, 64)    0           activation_4[0][0]               
    ____________________________________________________________________________________________________
    res2a_branch2a (Conv2D)          (None, 15, 15, 64)    4160        max_pooling2d_1[0][0]            
    ____________________________________________________________________________________________________
    bn2a_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2a_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_5 (Activation)        (None, 15, 15, 64)    0           bn2a_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res2a_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_5[0][0]               
    ____________________________________________________________________________________________________
    bn2a_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2a_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_6 (Activation)        (None, 15, 15, 64)    0           bn2a_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res2a_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_6[0][0]               
    ____________________________________________________________________________________________________
    res2a_branch1 (Conv2D)           (None, 15, 15, 256)   16640       max_pooling2d_1[0][0]            
    ____________________________________________________________________________________________________
    bn2a_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2a_branch2c[0][0]             
    ____________________________________________________________________________________________________
    bn2a_branch1 (BatchNormalization (None, 15, 15, 256)   1024        res2a_branch1[0][0]              
    ____________________________________________________________________________________________________
    add_2 (Add)                      (None, 15, 15, 256)   0           bn2a_branch2c[0][0]              
                                                                       bn2a_branch1[0][0]               
    ____________________________________________________________________________________________________
    activation_7 (Activation)        (None, 15, 15, 256)   0           add_2[0][0]                      
    ____________________________________________________________________________________________________
    res2b_branch2a (Conv2D)          (None, 15, 15, 64)    16448       activation_7[0][0]               
    ____________________________________________________________________________________________________
    bn2b_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2b_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_8 (Activation)        (None, 15, 15, 64)    0           bn2b_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res2b_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_8[0][0]               
    ____________________________________________________________________________________________________
    bn2b_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2b_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_9 (Activation)        (None, 15, 15, 64)    0           bn2b_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res2b_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_9[0][0]               
    ____________________________________________________________________________________________________
    bn2b_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2b_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_3 (Add)                      (None, 15, 15, 256)   0           bn2b_branch2c[0][0]              
                                                                       activation_7[0][0]               
    ____________________________________________________________________________________________________
    activation_10 (Activation)       (None, 15, 15, 256)   0           add_3[0][0]                      
    ____________________________________________________________________________________________________
    res2c_branch2a (Conv2D)          (None, 15, 15, 64)    16448       activation_10[0][0]              
    ____________________________________________________________________________________________________
    bn2c_branch2a (BatchNormalizatio (None, 15, 15, 64)    256         res2c_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_11 (Activation)       (None, 15, 15, 64)    0           bn2c_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res2c_branch2b (Conv2D)          (None, 15, 15, 64)    36928       activation_11[0][0]              
    ____________________________________________________________________________________________________
    bn2c_branch2b (BatchNormalizatio (None, 15, 15, 64)    256         res2c_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_12 (Activation)       (None, 15, 15, 64)    0           bn2c_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res2c_branch2c (Conv2D)          (None, 15, 15, 256)   16640       activation_12[0][0]              
    ____________________________________________________________________________________________________
    bn2c_branch2c (BatchNormalizatio (None, 15, 15, 256)   1024        res2c_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_4 (Add)                      (None, 15, 15, 256)   0           bn2c_branch2c[0][0]              
                                                                       activation_10[0][0]              
    ____________________________________________________________________________________________________
    activation_13 (Activation)       (None, 15, 15, 256)   0           add_4[0][0]                      
    ____________________________________________________________________________________________________
    res3a_branch2a (Conv2D)          (None, 8, 8, 128)     32896       activation_13[0][0]              
    ____________________________________________________________________________________________________
    bn3a_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3a_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_14 (Activation)       (None, 8, 8, 128)     0           bn3a_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res3a_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_14[0][0]              
    ____________________________________________________________________________________________________
    bn3a_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3a_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_15 (Activation)       (None, 8, 8, 128)     0           bn3a_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res3a_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_15[0][0]              
    ____________________________________________________________________________________________________
    res3a_branch1 (Conv2D)           (None, 8, 8, 512)     131584      activation_13[0][0]              
    ____________________________________________________________________________________________________
    bn3a_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3a_branch2c[0][0]             
    ____________________________________________________________________________________________________
    bn3a_branch1 (BatchNormalization (None, 8, 8, 512)     2048        res3a_branch1[0][0]              
    ____________________________________________________________________________________________________
    add_5 (Add)                      (None, 8, 8, 512)     0           bn3a_branch2c[0][0]              
                                                                       bn3a_branch1[0][0]               
    ____________________________________________________________________________________________________
    activation_16 (Activation)       (None, 8, 8, 512)     0           add_5[0][0]                      
    ____________________________________________________________________________________________________
    res3b_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_16[0][0]              
    ____________________________________________________________________________________________________
    bn3b_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3b_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_17 (Activation)       (None, 8, 8, 128)     0           bn3b_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res3b_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_17[0][0]              
    ____________________________________________________________________________________________________
    bn3b_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3b_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_18 (Activation)       (None, 8, 8, 128)     0           bn3b_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res3b_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_18[0][0]              
    ____________________________________________________________________________________________________
    bn3b_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3b_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_6 (Add)                      (None, 8, 8, 512)     0           bn3b_branch2c[0][0]              
                                                                       activation_16[0][0]              
    ____________________________________________________________________________________________________
    activation_19 (Activation)       (None, 8, 8, 512)     0           add_6[0][0]                      
    ____________________________________________________________________________________________________
    res3c_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_19[0][0]              
    ____________________________________________________________________________________________________
    bn3c_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3c_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_20 (Activation)       (None, 8, 8, 128)     0           bn3c_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res3c_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_20[0][0]              
    ____________________________________________________________________________________________________
    bn3c_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3c_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_21 (Activation)       (None, 8, 8, 128)     0           bn3c_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res3c_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_21[0][0]              
    ____________________________________________________________________________________________________
    bn3c_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3c_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_7 (Add)                      (None, 8, 8, 512)     0           bn3c_branch2c[0][0]              
                                                                       activation_19[0][0]              
    ____________________________________________________________________________________________________
    activation_22 (Activation)       (None, 8, 8, 512)     0           add_7[0][0]                      
    ____________________________________________________________________________________________________
    res3d_branch2a (Conv2D)          (None, 8, 8, 128)     65664       activation_22[0][0]              
    ____________________________________________________________________________________________________
    bn3d_branch2a (BatchNormalizatio (None, 8, 8, 128)     512         res3d_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_23 (Activation)       (None, 8, 8, 128)     0           bn3d_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res3d_branch2b (Conv2D)          (None, 8, 8, 128)     147584      activation_23[0][0]              
    ____________________________________________________________________________________________________
    bn3d_branch2b (BatchNormalizatio (None, 8, 8, 128)     512         res3d_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_24 (Activation)       (None, 8, 8, 128)     0           bn3d_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res3d_branch2c (Conv2D)          (None, 8, 8, 512)     66048       activation_24[0][0]              
    ____________________________________________________________________________________________________
    bn3d_branch2c (BatchNormalizatio (None, 8, 8, 512)     2048        res3d_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_8 (Add)                      (None, 8, 8, 512)     0           bn3d_branch2c[0][0]              
                                                                       activation_22[0][0]              
    ____________________________________________________________________________________________________
    activation_25 (Activation)       (None, 8, 8, 512)     0           add_8[0][0]                      
    ____________________________________________________________________________________________________
    res4a_branch2a (Conv2D)          (None, 4, 4, 256)     131328      activation_25[0][0]              
    ____________________________________________________________________________________________________
    bn4a_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4a_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_26 (Activation)       (None, 4, 4, 256)     0           bn4a_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4a_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_26[0][0]              
    ____________________________________________________________________________________________________
    bn4a_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4a_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_27 (Activation)       (None, 4, 4, 256)     0           bn4a_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4a_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_27[0][0]              
    ____________________________________________________________________________________________________
    res4a_branch1 (Conv2D)           (None, 4, 4, 1024)    525312      activation_25[0][0]              
    ____________________________________________________________________________________________________
    bn4a_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4a_branch2c[0][0]             
    ____________________________________________________________________________________________________
    bn4a_branch1 (BatchNormalization (None, 4, 4, 1024)    4096        res4a_branch1[0][0]              
    ____________________________________________________________________________________________________
    add_9 (Add)                      (None, 4, 4, 1024)    0           bn4a_branch2c[0][0]              
                                                                       bn4a_branch1[0][0]               
    ____________________________________________________________________________________________________
    activation_28 (Activation)       (None, 4, 4, 1024)    0           add_9[0][0]                      
    ____________________________________________________________________________________________________
    res4b_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_28[0][0]              
    ____________________________________________________________________________________________________
    bn4b_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4b_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_29 (Activation)       (None, 4, 4, 256)     0           bn4b_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4b_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_29[0][0]              
    ____________________________________________________________________________________________________
    bn4b_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4b_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_30 (Activation)       (None, 4, 4, 256)     0           bn4b_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4b_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_30[0][0]              
    ____________________________________________________________________________________________________
    bn4b_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4b_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_10 (Add)                     (None, 4, 4, 1024)    0           bn4b_branch2c[0][0]              
                                                                       activation_28[0][0]              
    ____________________________________________________________________________________________________
    activation_31 (Activation)       (None, 4, 4, 1024)    0           add_10[0][0]                     
    ____________________________________________________________________________________________________
    res4c_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_31[0][0]              
    ____________________________________________________________________________________________________
    bn4c_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4c_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_32 (Activation)       (None, 4, 4, 256)     0           bn4c_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4c_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_32[0][0]              
    ____________________________________________________________________________________________________
    bn4c_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4c_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_33 (Activation)       (None, 4, 4, 256)     0           bn4c_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4c_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_33[0][0]              
    ____________________________________________________________________________________________________
    bn4c_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4c_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_11 (Add)                     (None, 4, 4, 1024)    0           bn4c_branch2c[0][0]              
                                                                       activation_31[0][0]              
    ____________________________________________________________________________________________________
    activation_34 (Activation)       (None, 4, 4, 1024)    0           add_11[0][0]                     
    ____________________________________________________________________________________________________
    res4d_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_34[0][0]              
    ____________________________________________________________________________________________________
    bn4d_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4d_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_35 (Activation)       (None, 4, 4, 256)     0           bn4d_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4d_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_35[0][0]              
    ____________________________________________________________________________________________________
    bn4d_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4d_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_36 (Activation)       (None, 4, 4, 256)     0           bn4d_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4d_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_36[0][0]              
    ____________________________________________________________________________________________________
    bn4d_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4d_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_12 (Add)                     (None, 4, 4, 1024)    0           bn4d_branch2c[0][0]              
                                                                       activation_34[0][0]              
    ____________________________________________________________________________________________________
    activation_37 (Activation)       (None, 4, 4, 1024)    0           add_12[0][0]                     
    ____________________________________________________________________________________________________
    res4e_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_37[0][0]              
    ____________________________________________________________________________________________________
    bn4e_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4e_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_38 (Activation)       (None, 4, 4, 256)     0           bn4e_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4e_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_38[0][0]              
    ____________________________________________________________________________________________________
    bn4e_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4e_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_39 (Activation)       (None, 4, 4, 256)     0           bn4e_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4e_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_39[0][0]              
    ____________________________________________________________________________________________________
    bn4e_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4e_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_13 (Add)                     (None, 4, 4, 1024)    0           bn4e_branch2c[0][0]              
                                                                       activation_37[0][0]              
    ____________________________________________________________________________________________________
    activation_40 (Activation)       (None, 4, 4, 1024)    0           add_13[0][0]                     
    ____________________________________________________________________________________________________
    res4f_branch2a (Conv2D)          (None, 4, 4, 256)     262400      activation_40[0][0]              
    ____________________________________________________________________________________________________
    bn4f_branch2a (BatchNormalizatio (None, 4, 4, 256)     1024        res4f_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_41 (Activation)       (None, 4, 4, 256)     0           bn4f_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res4f_branch2b (Conv2D)          (None, 4, 4, 256)     590080      activation_41[0][0]              
    ____________________________________________________________________________________________________
    bn4f_branch2b (BatchNormalizatio (None, 4, 4, 256)     1024        res4f_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_42 (Activation)       (None, 4, 4, 256)     0           bn4f_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res4f_branch2c (Conv2D)          (None, 4, 4, 1024)    263168      activation_42[0][0]              
    ____________________________________________________________________________________________________
    bn4f_branch2c (BatchNormalizatio (None, 4, 4, 1024)    4096        res4f_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_14 (Add)                     (None, 4, 4, 1024)    0           bn4f_branch2c[0][0]              
                                                                       activation_40[0][0]              
    ____________________________________________________________________________________________________
    activation_43 (Activation)       (None, 4, 4, 1024)    0           add_14[0][0]                     
    ____________________________________________________________________________________________________
    res5a_branch2a (Conv2D)          (None, 2, 2, 512)     524800      activation_43[0][0]              
    ____________________________________________________________________________________________________
    bn5a_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5a_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_44 (Activation)       (None, 2, 2, 512)     0           bn5a_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res5a_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_44[0][0]              
    ____________________________________________________________________________________________________
    bn5a_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5a_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_45 (Activation)       (None, 2, 2, 512)     0           bn5a_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res5a_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_45[0][0]              
    ____________________________________________________________________________________________________
    res5a_branch1 (Conv2D)           (None, 2, 2, 2048)    2099200     activation_43[0][0]              
    ____________________________________________________________________________________________________
    bn5a_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5a_branch2c[0][0]             
    ____________________________________________________________________________________________________
    bn5a_branch1 (BatchNormalization (None, 2, 2, 2048)    8192        res5a_branch1[0][0]              
    ____________________________________________________________________________________________________
    add_15 (Add)                     (None, 2, 2, 2048)    0           bn5a_branch2c[0][0]              
                                                                       bn5a_branch1[0][0]               
    ____________________________________________________________________________________________________
    activation_46 (Activation)       (None, 2, 2, 2048)    0           add_15[0][0]                     
    ____________________________________________________________________________________________________
    res5b_branch2a (Conv2D)          (None, 2, 2, 512)     1049088     activation_46[0][0]              
    ____________________________________________________________________________________________________
    bn5b_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5b_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_47 (Activation)       (None, 2, 2, 512)     0           bn5b_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res5b_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_47[0][0]              
    ____________________________________________________________________________________________________
    bn5b_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5b_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_48 (Activation)       (None, 2, 2, 512)     0           bn5b_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res5b_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_48[0][0]              
    ____________________________________________________________________________________________________
    bn5b_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5b_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_16 (Add)                     (None, 2, 2, 2048)    0           bn5b_branch2c[0][0]              
                                                                       activation_46[0][0]              
    ____________________________________________________________________________________________________
    activation_49 (Activation)       (None, 2, 2, 2048)    0           add_16[0][0]                     
    ____________________________________________________________________________________________________
    res5c_branch2a (Conv2D)          (None, 2, 2, 512)     1049088     activation_49[0][0]              
    ____________________________________________________________________________________________________
    bn5c_branch2a (BatchNormalizatio (None, 2, 2, 512)     2048        res5c_branch2a[0][0]             
    ____________________________________________________________________________________________________
    activation_50 (Activation)       (None, 2, 2, 512)     0           bn5c_branch2a[0][0]              
    ____________________________________________________________________________________________________
    res5c_branch2b (Conv2D)          (None, 2, 2, 512)     2359808     activation_50[0][0]              
    ____________________________________________________________________________________________________
    bn5c_branch2b (BatchNormalizatio (None, 2, 2, 512)     2048        res5c_branch2b[0][0]             
    ____________________________________________________________________________________________________
    activation_51 (Activation)       (None, 2, 2, 512)     0           bn5c_branch2b[0][0]              
    ____________________________________________________________________________________________________
    res5c_branch2c (Conv2D)          (None, 2, 2, 2048)    1050624     activation_51[0][0]              
    ____________________________________________________________________________________________________
    bn5c_branch2c (BatchNormalizatio (None, 2, 2, 2048)    8192        res5c_branch2c[0][0]             
    ____________________________________________________________________________________________________
    add_17 (Add)                     (None, 2, 2, 2048)    0           bn5c_branch2c[0][0]              
                                                                       activation_49[0][0]              
    ____________________________________________________________________________________________________
    activation_52 (Activation)       (None, 2, 2, 2048)    0           add_17[0][0]                     
    ____________________________________________________________________________________________________
    avg_pool (AveragePooling2D)      (None, 1, 1, 2048)    0           activation_52[0][0]              
    ____________________________________________________________________________________________________
    flatten_1 (Flatten)              (None, 2048)          0           avg_pool[0][0]                   
    ____________________________________________________________________________________________________
    fc6 (Dense)                      (None, 6)             12294       flatten_1[0][0]                  
    ====================================================================================================
    Total params: 23,600,006
    Trainable params: 23,546,886
    Non-trainable params: 53,120
    ____________________________________________________________________________________________________
    

      

    Finally, run the code below to visualize your ResNet50. You can also download a .png picture of your model by going to "File -> Open...-> model.png".

    plot_model(model, to_file='model.png')
    SVG(model_to_dot(model).create(prog='dot', format='svg'))
    

      

    What you should remember:

    • Very deep "plain" networks don't work in practice because they are hard to train due to vanishing gradients.
    • The skip-connections help to address the Vanishing Gradient problem. They also make it easy for a ResNet block to learn an identity function.
    • There are two main type of blocks: The identity block and the convolutional block.
    • Very deep Residual Networks are built by stacking these blocks together.

      

    References

    This notebook presents the ResNet algorithm due to He et al. (2015). The implementation here also took significant inspiration and follows the structure given in the github repository of Francois Chollet:

      

  • 相关阅读:
    渗透资源大全
    Brute Force(暴力(破解))
    关于Burp Suite不能抓包的解决方法
    新手指南:DVWA-1.9全级别教程之SQL Injection
    mysql里面如何用sql语句让字符串转换为数字
    手把手教你如何搭建自己的渗透测试环境
    php错误提示
    vmware虚拟机三种网络模式详解
    Vmware虚拟机下三种网络模式配置
    cmd开启3389
  • 原文地址:https://www.cnblogs.com/hezhiyao/p/8414540.html
Copyright © 2020-2023  润新知