• 课程一(Neural Networks and Deep Learning)总结——2、Deep Neural Networks


    Deep L-layer neural network

    1 - General methodology

    As usual you will follow the Deep Learning methodology to build the model:

    1). Initialize parameters / Define hyperparameters

    2). Loop for num_iterations:

        a. Forward propagation

        b. Compute cost function

        c. Backward propagation

        d. Update parameters (using parameters, and grads from backprop)

    3). Use trained parameters to predict labels

    2 - Architecture of your model

    You will build two different models to distinguish cat images from non-cat images.

    • A 2-layer neural network
    • An L-layer deep neural network

    2.1 - 2-layer neural network

     

    Figure 1: 2-layer neural network. 
    The model can be summarized as: INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT.

    Detailed Architecture of figure 2:

    • The input is a (64,64,3) image which is flattened to a vector of size (12288,1).
    • The corresponding vectoris then multiplied by the weight matrix of size 
    • You then add a bias term and take its relu to get the following vector: 
    • You then repeat the same process.You multiply the resulting vector by and add your intercept (bias).
    • Finally, you take the sigmoid of the result. If it is greater than 0.5, you classify it to be a cat.

    2.2 - L-layer deep neural network

    Figure 2: L-layer neural network. 
    The model can be summarized as: [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID

    Detailed Architecture of figure 3:

    • The input is a (64,64,3) image which is flattened to a vector of size (12288,1).The corresponding vector is then multiplied by the weight matrixand then you add the intercept .The result is called the linear unit.
    • Next, you take the relu of the linear unit. This process could be repeated several times for each,depending on the model architecture.
    • Finally, you take the sigmoid of the final linear unit. If it is greater than 0.5, you classify it to be a cat.

    3 - Two-layer neural network

    Question: Use the helper functions you have implemented to build a 2-layer neural network with the following structure: LINEAR -> RELU -> LINEAR -> SIGMOID. The functions you may need and their inputs are:

    def initialize_parameters(n_x, n_h, n_y):
        ...
        return parameters 
    def linear_activation_forward(A_prev, W, b, activation):
        ...
        return A, cache
    def compute_cost(AL, Y):
        ...
        return cost
    def linear_activation_backward(dA, cache, activation):
        ...
        return dA_prev, dW, db
    def update_parameters(parameters, grads, learning_rate):
        ...
    return parameters
    def predict(train_x, train_y, parameters):
        ...
        return Accuracy

    3.1 - initialize_parameters(n_x, n_h, n_y)

    Create and initialize the parameters of the 2-layer neural network.

    Instructions:

    • The model's structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
    • Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
    • Use zero initialization for the biases. Use np.zeros(shape).
    # GRADED FUNCTION: initialize_parameters
    
    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
        
        Returns:
        parameters -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
        
        np.random.seed(1)
        
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = np.random.randn(n_h, n_x)*0.01
        b1 = np.zeros((n_h, 1))
        W2 = np.random.randn(n_y, n_h)*0.01
        b2 = np.zeros((n_y, 1))
        ### END CODE HERE ###
        
        assert(W1.shape == (n_h, n_x))
        assert(b1.shape == (n_h, 1))
        assert(W2.shape == (n_y, n_h))
        assert(b2.shape == (n_y, 1))
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
    return parameters    

    3.2 - linear_activation_forward(A_prev, W, b, activation)

    # GRADED FUNCTION: linear_activation_forward
    
    def linear_activation_forward(A_prev, W, b, activation):
        """
        Implement the forward propagation for the LINEAR->ACTIVATION layer
    
        Arguments:
        A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
        W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
        b -- bias vector, numpy array of shape (size of the current layer, 1)
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
    
        Returns:
        A -- the output of the activation function, also called the post-activation value(后面的值) 
        cache -- a python dictionary containing "linear_cache" and "activation_cache";
                 stored for computing the backward pass efficiently
        """
        
        if activation == "sigmoid":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            ### START CODE HERE ### (≈ 2 lines of code)
            Z, linear_cache =  linear_forward(A_prev, W, b)   # linear_cache (A_prev,W,b)
            A, activation_cache = sigmoid(Z)                  # activation_cache (Z)
            ### END CODE HERE ###
        
        elif activation == "relu":
            # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
            ### START CODE HERE ### (≈ 2 lines of code)
            Z, linear_cache =linear_forward(A_prev, W, b)   # linear_cache (A_prev,W,b)
            A, activation_cache = relu(Z)                 # activation_cache (Z)
            ### END CODE HERE ### 
        
        assert (A.shape == (W.shape[0], A_prev.shape[1]))
        cache = (linear_cache, activation_cache)   # cache (A_prev,W,b,Z)
    
        return A, cache

    3.3 - compute_cost(AL, Y)

    Compute the cross-entropy cost  J, using the following formula:

    # GRADED FUNCTION: compute_cost
    
    def compute_cost(AL, Y):
        """
        Implement the cost function defined by equation (7).
    
        Arguments:
        AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
        Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
    
        Returns:
        cost -- cross-entropy cost
        """
        
        m = Y.shape[1]
    
        # Compute loss from aL and y.
        ### START CODE HERE ### (≈ 1 lines of code)
        cost = - (1/m)*(np.dot(Y, np.log(AL).T) + np.dot(1 - Y, np.log(1-AL).T)) 
        ### END CODE HERE ###
        
        cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
        assert(cost.shape == ())
        
        return cost 

    3.4 - linear_activation_backward(dA, cache, activation)

    # GRADED FUNCTION: linear_activation_backward
    
    def linear_activation_backward(dA, cache, activation):
        """
        Implement the backward propagation for the LINEAR->ACTIVATION layer.
        
        Arguments:
        dA -- post-activation gradient for current layer l 
        cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
        activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"
        
        Returns:
        dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
        dW -- Gradient of the cost with respect to W (current layer l), same shape as W
        db -- Gradient of the cost with respect to b (current layer l), same shape as b
        """
        linear_cache, activation_cache = cache
        
        if activation == "relu":
            ### START CODE HERE ### (≈ 2 lines of code)
            dZ = relu_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
            ### END CODE HERE ###
            
        elif activation == "sigmoid":
            ### START CODE HERE ### (≈ 2 lines of code)
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = linear_backward(dZ, linear_cache)
            ### END CODE HERE ###
        
        return dA_prev, dW, db

    3.5 - update_parameters

    # GRADED FUNCTION: update_parameters
    
    def update_parameters(parameters, grads, learning_rate):
        """
        Update parameters using gradient descent
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients, output of L_model_backward
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
                      parameters["W" + str(l)] = ... 
                      parameters["b" + str(l)] = ...
        """
        
        L = len(parameters) // 2 # number of layers in the neural network
    
        # Update rule for each parameter. Use a for loop.
        ### START CODE HERE ### (≈ 3 lines of code)
        for l in range(1, L+1):   # l=`,2,3,...,L
             parameters["W" + str(l)] = parameters["W" + str(l)] - learning_rate*grads["dW" + str(l)]
             parameters["b" + str(l)] = parameters["b" + str(l)] - learning_rate*grads["db" + str(l)]
        ### END CODE HERE ###
        return parameters

    3.6 - predict(train_x, train_y, parameters)

    pred_train = predict(train_x, train_y, parameters)

    4 - L-layer neural network

    Question: Use the helper functions you have implemented previously to build an LL-layer neural network with the following structure: [LINEAR -> RELU]×(L-1) -> LINEAR -> SIGMOID. The functions you may need and their inputs are:

    def initialize_parameters_deep(layer_dims):
        ...
        return parameters 
    def L_model_forward(X, parameters):
        ...
        return AL, caches
    def compute_cost(AL, Y):
        ...
        return cost
    def L_model_backward(AL, Y, caches):
        ...
        return grads
    def update_parameters(parameters, grads, learning_rate):
        ...
        return parameters
    In [14]:
    def predict(train_x, train_y, parameters):
        ...
        return Accuracy

    4.1 - initialize_parameters_deep(layer_dims)

    Implement initialization for an L-layer Neural Network.

    Instructions:

    • The model's structure is [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID. I.e., it has L−1layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
    • Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
    • Use zeros initialization for the biases. Use np.zeros(shape).
    • We will store , the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1's shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to LL layers!
    • Here is the implementation for L=1(one layer neural network). It should inspire you to implement the general case (L-layer neural network).
     if L == 1:
          parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
          parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
    # GRADED FUNCTION: initialize_parameters_deep
    
    def initialize_parameters_deep(layer_dims):
        """
        Arguments:
        layer_dims -- python array (list) containing the dimensions of each layer in our network
        
        Returns:
        parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                        Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                        bl -- bias vector of shape (layer_dims[l], 1)
        """
        
        np.random.seed(3)
        parameters = {}
        L = len(layer_dims)            # number of layers in the network
    
        for l in range(1, L):
            ### START CODE HERE ### (≈ 2 lines of code)
            parameters['W' + str(l)] =  np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01
            parameters['b' + str(l)] =  np.zeros((layer_dims[l], 1))
            ### END CODE HERE ###
            
            assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
            assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))
    
            
        return parameters

    4.2 - L_model_forward(X, parameters)

    # GRADED FUNCTION: L_model_forward
    
    def L_model_forward(X, parameters):
        """
        Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
        
        Arguments:
        X -- data, numpy array of shape (input size, number of examples)
        parameters -- output of initialize_parameters_deep()
        
        Returns:
        AL -- last post-activation value
        caches -- list of caches containing:
                    every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)
                    the cache of linear_sigmoid_forward() (there is one, indexed L-1)
        """
    
        caches = []
        A = X
        L = len(parameters) // 2       # number of layers in the neural network
        
        # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
        for l in range(1, L):   #注意range是(1,L),最后的L不算进循环,l实际是从1到 L-1
            A_prev = A 
            ### START CODE HERE ### (≈ 2 lines of code)
            A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], parameters['b'+str(l)], activation = "relu")
            caches.append(cache)
            ### END CODE HERE ###
        
        # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
        ### START CODE HERE ### (≈ 2 lines of code)
        AL, cache = linear_activation_forward(A, parameters['W'+str(L)], parameters['b'+str(L)], activation = "sigmoid")
        caches.append(cache) 
        ### END CODE HERE ###
        
        assert(AL.shape == (1,X.shape[1]))
                
        return AL, caches   # caches (A_prev,W,b,Z)

    4.3 - compute_cost(AL, Y)

    Compute the cross-entropy cost J, using the following formula:

    # GRADED FUNCTION: compute_cost
    
    def compute_cost(AL, Y):
        """
        Implement the cost function defined by equation (7).
    
        Arguments:
        AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
        Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
    
        Returns:
        cost -- cross-entropy cost
        """
        
        m = Y.shape[1]
    
        # Compute loss from aL and y.
        ### START CODE HERE ### (≈ 1 lines of code)
        cost = - (1/m)*(np.dot(Y, np.log(AL).T) + np.dot(1 - Y, np.log(1-AL).T)) 
        ### END CODE HERE ###
        
        cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).
        assert(cost.shape == ())
        
        return cost

    4.4 - L_model_backward(AL, Y, caches)

    # GRADED FUNCTION: L_model_backward
    
    def L_model_backward(AL, Y, caches):
        """
        Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
        
        Arguments:
        AL -- probability vector, output of the forward propagation (L_model_forward())
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
        caches -- list of caches containing:
                    every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)
                    the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])
        
        Returns:
        grads -- A dictionary with the gradients
                 grads["dA" + str(l)] = ... 
                 grads["dW" + str(l)] = ...
                 grads["db" + str(l)] = ... 
        """
        grads = {}
        L = len(caches) # the number of layers
        m = AL.shape[1]
        Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
        
        # Initializing the backpropagation
        ### START CODE HERE ### (1 line of code)
        dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL
        ### END CODE HERE ###
        
        # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
        ### START CODE HERE ### (approx. 2 lines)
        current_cache = caches[L-1]
        grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] =linear_activation_backward(dAL, current_cache, activation = "sigmoid")  
        ### END CODE HERE ###
        
        for l in reversed(range(L-1)):  # l=L-2,L-3,...,2,1,0
            # lth layer: (RELU -> LINEAR) gradients.
            # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
            ### START CODE HERE ### (approx. 5 lines)
            current_cache =  caches[l]    # l= L-2,L-1,...,2,1,0   当l=L-2时
            dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+2)], current_cache, activation = "relu")  # l+2=L
            grads["dA" + str(l + 1)] = dA_prev_temp     #l=L-1
            grads["dW" + str(l + 1)] = dW_temp      #l+1=L-1
            grads["db" + str(l + 1)] = db_temp      #l+1=L-1
            ### END CODE HERE ###
    
        return grads

     

    4.5 - update_parameters

    # GRADED FUNCTION: update_parameters
    
    def update_parameters(parameters, grads, learning_rate):
        """
        Update parameters using gradient descent
        
        Arguments:
        parameters -- python dictionary containing your parameters 
        grads -- python dictionary containing your gradients, output of L_model_backward
        
        Returns:
        parameters -- python dictionary containing your updated parameters 
                      parameters["W" + str(l)] = ... 
                      parameters["b" + str(l)] = ...
        """
        
        L = len(parameters) // 2 # number of layers in the neural network
    
        # Update rule for each parameter. Use a for loop.
        ### START CODE HERE ### (≈ 3 lines of code)
        for l in range(1, L+1):   # l=`,2,3,...,L
             parameters["W" + str(l)] = parameters["W" + str(l)] - learning_rate*grads["dW" + str(l)]
             parameters["b" + str(l)] = parameters["b" + str(l)] - learning_rate*grads["db" + str(l)]
        ### END CODE HERE ###
        return parameters

    4.6 - predict(train_x, train_y, parameters)

    pred_train = predict(train_x, train_y, parameters)

    pred_test = predict(test_x, test_y, parameters)

     【参考】:

    [1] https://hub.coursera-notebooks.org/user/rdzflaokljifhqibzgygqq/notebooks/Week%204/Deep%20Neural%20Network%20Application:%20Image%20Classification/Deep%20Neural%20Network%20-%20Application%20v3.ipynb

     [2] https://hub.coursera-notebooks.org/user/rdzflaokljifhqibzgygqq/notebooks/Week%204/Building%20your%20Deep%20Neural%20Network%20-%20Step%20by%20Step/Building%20your%20Deep%20Neural%20Network%20-%20Step%20by%20Step%20v5.ipynb

    【附录】:

    L层神经网络的详细推导,见hezhiyao的github:    https://github.com/hezhiyao/Deep-L-layer-neural-network-Notes

  • 相关阅读:
    HTTP协议详解【转】
    Spring中的IOC和AOP
    Servlet生命周期
    Struts2基本原理【转】
    继承映射的三种方式
    树状数组(两个树状数组累计)
    二维数组数组(区间更新+单点查询)
    东西海岸(逆序对)
    离散化+单点更新+区间求和
    单调栈+dp
  • 原文地址:https://www.cnblogs.com/hezhiyao/p/7922850.html
Copyright © 2020-2023  润新知