• tensorflow 2.0 学习 (十三)卷积神经网络 (三) CIFAR10数据集与修改的ResNet18网络 + CoLab


    ResNet网络结构如下:

    采用模型和数据分离的代码方式,模型如下:

      1 # encoding: utf-8
      2 import tensorflow as tf
      3 from tensorflow.keras import optimizers, datasets, Model, layers, Sequential, losses
      4 from tensorflow.keras.layers import Conv2D, Dense, add, BatchNormalization, GlobalAveragePooling2D
      5 import matplotlib.pyplot as plt
      6 
      7 # load data ---------
      8 (x, y), (x_test, y_test) = datasets.cifar10.load_data()
      9 y = tf.squeeze(y, axis=1)
     10 y_test = tf.squeeze(y_test, axis=1)
     11 # print(x.shape, y.shape, x_test.shape, y_test.shape)
     12 # (50000, 32, 32, 3) (50000,) (10000, 32, 32, 3) (10000,)
     13 
     14 
     15 def pre_process(x, y):
     16     x_reshape = tf.cast(x, dtype=tf.float32) / 255.
     17     y_reshape = tf.cast(y, dtype=tf.int32)  # 转化为整型32
     18     y_onehot = tf.one_hot(y_reshape, depth=10)  # 训练数据所需的one-hot编码
     19     return x_reshape, y_onehot
     20 
     21 
     22 train_db = tf.data.Dataset.from_tensor_slices((x, y))
     23 train_db = train_db.shuffle(1000).map(pre_process).batch(128)
     24 test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
     25 test_db = test_db.shuffle(1000).map(pre_process).batch(128)
     26 
     27 # sample = next(iter(train_db))
     28 # print('sample:', sample[0].shape, sample[1].shape,
     29 #       tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
     30 # sample: (128, 32, 32, 3) (128, 10)
     31 # tf.Tensor(0.0, shape=(), dtype=float32) tf.Tensor(1.0, shape=(), dtype=float32)
     32 # ----------------------
     33 
     34 
     35 # Net ------------------------
     36 class ResNet(Model):
     37     def __init__(self):
     38         super(ResNet, self).__init__()
     39         self.conv1 = Sequential([
     40             Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu')
     41         ])
     42         self.conv2 = Sequential([
     43             Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu'),
     44             BatchNormalization(),
     45             Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu'),
     46             BatchNormalization()
     47         ])
     48         self.conv3 = Sequential([
     49             Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu'),
     50             BatchNormalization(),
     51             Conv2D(64, kernel_size=3, strides=1, padding='same', activation='relu'),
     52             BatchNormalization()
     53         ])
     54         self.conv4 = Sequential([
     55             Conv2D(128, kernel_size=3, strides=2, padding='same', activation='relu'),
     56             BatchNormalization(),
     57             Conv2D(128, kernel_size=3, strides=1, padding='same', activation='relu'),
     58             BatchNormalization()
     59         ])
     60         self.conv5 = Sequential([
     61             Conv2D(128, kernel_size=3, strides=1, padding='same', activation='relu'),
     62             BatchNormalization(),
     63             Conv2D(128, kernel_size=3, strides=1, padding='same', activation='relu'),
     64             BatchNormalization()
     65         ])
     66         self.conv6 = Sequential([
     67             Conv2D(256, kernel_size=3, strides=2, padding='same', activation='relu'),
     68             BatchNormalization(),
     69             Conv2D(256, kernel_size=3, strides=1, padding='same', activation='relu'),
     70             BatchNormalization(),
     71         ])
     72         self.conv7 = Sequential([
     73             Conv2D(256, kernel_size=3, strides=1, padding='same', activation='relu'),
     74             BatchNormalization(),
     75             Conv2D(256, kernel_size=3, strides=1, padding='same', activation='relu'),
     76             BatchNormalization()
     77         ])
     78         self.conv8 = Sequential([
     79             Conv2D(512, kernel_size=3, strides=2, padding='same', activation='relu'),
     80             BatchNormalization(),
     81             Conv2D(512, kernel_size=3, strides=1, padding='same', activation='relu'),
     82             BatchNormalization()
     83         ])
     84         self.conv9 = Sequential([
     85             Conv2D(512, kernel_size=3, strides=1, padding='same', activation='relu'),
     86             BatchNormalization(),
     87             Conv2D(512, kernel_size=3, strides=1, padding='same', activation='relu'),
     88             BatchNormalization()
     89         ])
     90 
     91         self.avgPool = GlobalAveragePooling2D()
     92 
     93         self.fc10 = Dense(10)
     94 
     95         self.conv_128 = Conv2D(128, kernel_size=1, strides=2, padding='same', activation='relu')
     96         self.conv_256 = Conv2D(256, kernel_size=1, strides=2, padding='same', activation='relu')
     97         self.conv_512 = Conv2D(512, kernel_size=1, strides=2, padding='same', activation='relu')
     98 
     99     def call(self, inputs):
    100         layer1 = self.conv1(inputs)
    101         layer2 = self.conv2(layer1)
    102         layer_one = add([layer1, layer2])
    103 
    104         layer3 = self.conv3(layer_one)
    105         layer_two = add([layer_one, layer3])
    106 
    107         layer4 = self.conv4(layer_two)
    108         layer4_1 = self.conv_128(layer_two)
    109         layer_thi = add([layer4, layer4_1])
    110 
    111         layer5 = self.conv5(layer_thi)
    112         layer6 = self.conv6(layer5)
    113         layer6_1 = self.conv_256(layer5)
    114         layer_fou = add([layer6, layer6_1])
    115 
    116         layer7 = self.conv7(layer_fou)
    117         layer8 = self.conv8(layer7)
    118         layer8_1 = self.conv_512(layer7)
    119         layer_fiv = add([layer8, layer8_1])
    120 
    121         layer9 = self.conv9(layer_fiv)
    122         layer9_1 = self.avgPool(layer9)
    123         layer10 = self.fc10(layer9_1)
    124 
    125         return layer10
    126 # --------------------------
    127 
    128 
    129 def main():
    130     model = ResNet()
    131     model.build(input_shape=(None, 32, 32, 3))
    132     model.summary()
    133 
    134     optimizer = tf.keras.optimizers.RMSprop(0.001)  # 创建优化器,指定学习率
    135     criteon = losses.CategoricalCrossentropy(from_logits=True)
    136     Epoch = 50
    137     # 保存训练和测试过程中的误差情况
    138     train_tot_loss = []
    139     test_tot_loss = []
    140 
    141     for epoch in range(Epoch):
    142         cor, tot = 0, 0
    143         for step, (x, y) in enumerate(train_db):  # (128, 32, 32, 3), (128, 10)
    144             with tf.GradientTape() as tape:  # 构建梯度环境
    145                 # train
    146                 out = model(x)  # (128, 10)
    147 
    148                 # calculate loss
    149                 y = tf.cast(y, dtype=tf.float32)
    150                 loss = criteon(y, out)
    151 
    152                 variables = model.trainable_variables
    153                 grads = tape.gradient(loss, variables)
    154                 optimizer.apply_gradients(zip(grads, variables))
    155 
    156                 # train var
    157                 train_out = tf.nn.softmax(out, axis=1)
    158                 train_out = tf.argmax(train_out, axis=1)
    159                 train_out = tf.cast(train_out, dtype=tf.int64)
    160 
    161                 train_y = tf.nn.softmax(y, axis=1)
    162                 train_y = tf.argmax(train_y, axis=1)
    163 
    164                 # calculate train var loss
    165                 train_cor = tf.equal(train_y, train_out)
    166                 train_cor = tf.cast(train_cor, dtype=tf.float32)
    167                 train_cor = tf.reduce_sum(train_cor)
    168                 cor += train_cor
    169                 tot += x.shape[0]
    170 
    171         print('After %d Epoch' % epoch)
    172         print('training acc is ', cor / tot)
    173         train_tot_loss.append(cor / tot)
    174 
    175         correct, total = 0, 0
    176         for x, y in test_db:
    177             # test
    178             pred = model(x)
    179 
    180             # test var
    181             test_out = tf.nn.softmax(pred, axis=1)
    182             test_out = tf.argmax(test_out, axis=1)
    183             test_out = tf.cast(test_out, dtype=tf.int64)
    184 
    185             test_y = tf.nn.softmax(y, axis=1)
    186             test_y = tf.argmax(test_y, axis=1)
    187 
    188             test_cor = tf.equal(test_y, test_out)
    189             test_cor = tf.cast(test_cor, dtype=tf.float32)
    190             test_cor = tf.reduce_sum(test_cor)
    191             correct += test_cor
    192             total += x.shape[0]
    193 
    194         print('testing acc is : ', correct / total)
    195         test_tot_loss.append(correct / total)
    196 
    197     plt.figure()
    198     plt.plot(train_tot_loss, 'b', label='train')
    199     plt.plot(test_tot_loss, 'r', label='test')
    200     plt.xlabel('Epoch')
    201     plt.ylabel('ACC')
    202     plt.legend()
    203     # plt.savefig('exam8.3_train_test_CNN1.png')
    204     plt.show()
    205 
    206 
    207 if __name__ == "__main__":
    208     main()

    程序调试成功,没有训练,测试数据,

    数据量太大,目前的机器不行,待有合适的时机再做预测。

    下次更新:RNN网络实战IMDB数据集

    2020.5.17 重新更新代码 用CoLab跑代码

    训练效果:

    预测效果在75%左右,但有小幅度的波动。

  • 相关阅读:
    22.抽象类
    21.多态
    20.修饰符
    19.继承
    day46---MySQL数据库进阶(一)
    day45---mysql数据库基本操作初阶(二)
    day45---计算机安全项目(癞蛤蟆)
    day44---数据库初阶(一)
    day44---windows下安装MySQL-5.6.37
    day42---几种network IO模型
  • 原文地址:https://www.cnblogs.com/heze/p/12348790.html
Copyright © 2020-2023  润新知