• 【LG3783】[SDOI2017]天才黑客


    【LG3783】[SDOI2017]天才黑客

    题面

    洛谷

    题解

    首先我们有一个非常显然的(O(m^2))算法,就是将每条边看成点,
    然后将每个点的所有入边和出边暴力连边跑最短路,我们想办法优化这里的连边。

    具体怎么做呢,我们将所有入边和出边在( ext{Trie})树上所对应的点放在一起按(dfs)序排一遍序,那么相邻两个点的距离就是(dep_{lca}),任意两点之间距离就是他们之间所有的(dep_{lca})取个(min)

    那么如何优化连边呢,我们考虑建如图所示的四排点:

    graph 1.png

    其中(p)号节点从(dfs)序小的往大的连(0)边,(q)号点反之。
    然后相邻的(p)(p')之间连他们两两之间的(dep_{lca})(q)点亦然。

    然后入点向编号对应的(p,q)(0)边,(p',q')向出点连(0)边,然后发现两点之间的距离都可以取(min)啦,这样子我们就可以直接跑(dijkstra)即可。
    (具体实现详见代码)

    代码

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring> 
    #include <cmath> 
    #include <algorithm>
    #include <vector>
    #include <queue> 
    using namespace std; 
    inline int gi() {
        register int data = 0, w = 1;
        register char ch = 0;
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar(); 
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
        return w * data; 
    } 
    const int INF = 2e9; 
    const int MAX_N = 1e6 + 5; 
    typedef vector<int> :: iterator iter; 
    vector<int> in[MAX_N], ot[MAX_N]; 
    struct Graph { int to, cost, next; } e[MAX_N << 1]; 
    int fir[MAX_N], e_cnt; 
    void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; } 
    void Add_Edge(int u, int v, int w) { e[e_cnt] = (Graph){v, w, fir[u]}, fir[u] = e_cnt++; } 
    int pa[16][MAX_N], dep[MAX_N], dfn[MAX_N], tim; 
    void dfs(int x, int fa) { 
    	dfn[x] = ++tim; 
    	if (fa) dep[x] = dep[fa] + 1; 
    	pa[0][x] = fa; 
    	for (int i = 1; i < 16; i++) 
    		pa[i][x] = pa[i - 1][pa[i - 1][x]]; 
    	for (int i = fir[x]; ~i; i = e[i].next) dfs(e[i].to, x); 
    } 
    int LCA(int x, int y) { 
    	if (dep[x] < dep[y]) swap(x, y); 
    	for (int i = 15; ~i; i--) 
    		if (dep[pa[i][x]] >= dep[y]) x = pa[i][x]; 
    	if (x == y) return x; 
    	for (int i = 15; ~i; i--) 
    		if (pa[i][x] != pa[i][y]) x = pa[i][x], y = pa[i][y]; 
    	return pa[0][x]; 
    } 
    int N, M, K, tot, v[MAX_N], d[MAX_N]; 
    int t[MAX_N], cnt; 
    int sl[MAX_N], sr[MAX_N], pl[MAX_N], pr[MAX_N]; 
    bool cmp(const int &i, const int &j) { return dfn[d[abs(i)]] < dfn[d[abs(j)]]; } 
    void build(int x) { 
    	cnt = 0; 
    	for (iter i = in[x].begin(); i != in[x].end(); ++i) t[++cnt] = *i; 
    	for (iter i = ot[x].begin(); i != ot[x].end(); ++i) t[++cnt] = -*i; 
    	sort(&t[1], &t[cnt + 1], cmp); 
    	for (int i = 1; i <= cnt; i++) { 
    		pl[i] = ++tot, pr[i] = ++tot; 
    		sl[i] = ++tot, sr[i] = ++tot; 
    		if (i > 1) {
    			Add_Edge(pl[i - 1], pl[i], 0), Add_Edge(pr[i - 1], pr[i], 0); 
    			Add_Edge(sl[i], sl[i - 1], 0), Add_Edge(sr[i], sr[i - 1], 0); 
    		} 
    		if (t[i] > 0) Add_Edge(t[i], pl[i], 0), Add_Edge(t[i], sl[i], 0); 
    		else t[i] = -t[i], Add_Edge(pr[i], t[i], 0), Add_Edge(sr[i], t[i], 0); 
    	} 
    	for (int i = 1; i < cnt; i++) { 
    		int w = dep[LCA(d[t[i]], d[t[i + 1]])]; 
    		Add_Edge(pl[i], pr[i + 1], w), Add_Edge(sl[i + 1], sr[i], w); 
    	} 
    } 
    priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > que; 
    bool vis[MAX_N]; 
    int dis[MAX_N]; 
    void dijkstra() { 
    	while (!que.empty()) { 
    		pair<int, int> p = que.top(); que.pop(); 
    		int x = p.second; 
    		if (dis[x] < p.first) continue; 
    		for (int i = fir[x]; ~i; i = e[i].next) { 
    			int v = e[i].to, w = e[i].cost + ::v[v];
    			if (!vis[v] && dis[x] + w < dis[v]) { 
    				dis[v] = dis[x] + w; 
    				que.push(make_pair(dis[v], v)); 
    			} 
    		} 
    	} 
    } 
    int main () { 
    #ifndef ONLINE_JUDGE 
        freopen("cpp.in", "r", stdin);
    	freopen("cpp.out", "w", stdout);
    #endif
    	int T = gi(); 
    	while (T--) { 
    		clearGraph(); 
    		for (int i = 0; i <= 1e6; i++) v[i] = d[i] = 0, dis[i] = INF, in[i].clear(), ot[i].clear(); 
    		N = gi(), M = tot = gi(), K = gi(); 
    		for (int i = 1; i <= M; i++) { 
    			int x = gi(), y = gi(); v[i] = gi(), d[i] = gi(); 
    			if (x == 1) que.push(make_pair(dis[i] = v[i], i)); 
    			in[y].push_back(i), ot[x].push_back(i); 
    		} 
    		for (int i = 1; i < K; i++) { 
    			int x = gi(), y = gi(); gi(); 
    			Add_Edge(x, y, 0); 
    		} 
    		tim = 0, dfs(1, 0); 
    		clearGraph(); 
    		for (int i = 1; i <= N; i++) build(i); 
    		dijkstra(); 
    		for (int i = 2; i <= N; i++) { 
    			int ans = INF; 
    			for (iter j = in[i].begin(); j != in[i].end(); ++j) ans = min(ans, dis[*j]); 
    			printf("%d
    ", ans); 
    		} 
    	} 
        return 0; 
    } 
    
  • 相关阅读:
    收集常用的.net开源项目
    前端兼容性
    IntelliJ IDEA 14 注册码生成器
    Web开发者的10个最好的云开发环境
    [置顶] 浅谈大型web系统架构
    简单的前端js+ajax 购物车框架(入门篇)
    CSS3 background-size图片自适应
    CSS clip:rect矩形剪裁功能及一些应用介绍
    Aspx 页面生命周期
    Asp.Net页面(母版页)加载顺序
  • 原文地址:https://www.cnblogs.com/heyujun/p/11688928.html
Copyright © 2020-2023  润新知