• 【LG3246】[HNOI2016]序列


    【LG3246】[HNOI2016]序列

    题面

    洛谷

    题解

    60pts

    对于每个位置(i),单调栈维护它往左第一个小于等于它的位置(lp_i)以及往右第一个小于它的位置(rp_i)

    那么在左端点在((lp_i,i]),右端点在([i,rp_i))的所有区间中,
    区间的贡献均为(a_i)(之所以取等情况不一样是防止算重或算漏)。

    那么对于一个询问(L,R),有

    [Ans=sum_{i=L}^R (i-max(lp_i+1,L)+1)cdot (min(rp_i-1,R)-i+1) ]

    100pts

    考虑莫队,那么我们的难点主要就是怎么从区间([L,R])转移到区间([L,R+1])

    用ST表查一下([L,R+1])的最小值的位置(p),则左端点在([L,p])的区间贡献均为(a[p])

    现在考虑左端点在([p+1,R+1])的贡献,记一个类似于前缀和的东西(f_i=f_{lp_i}+(i-lp_i)*a[i])
    则可以算出区间([p+1,R+1])的贡献为(f_{R+1}-f_p),因为(f_i)相当于求(i)(lp),它(lp)(lp)...
    (i)的贡献,而(p)必为某一个转移端点,所以成立。

    ([L-1,R])转移同样维护一个(g_i=g_{rp_i}+(rp_i-i)*a[i])

    减法直接减去一个位置对区间的贡献即可。

    代码

    #include <iostream> 
    #include <cstdio> 
    #include <cstdlib> 
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    using namespace std; 
    inline int gi() { 
        register int data = 0, w = 1; 
        register char ch = 0; 
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar(); 
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
        return w * data; 
    } 
    typedef long long ll; 
    const int MAX_N = 1e5 + 5; 
    const int LEN = 320; 
    int N, Q, a[MAX_N], bel[MAX_N]; 
    struct Query { int l, r, id; } q[MAX_N], tmp[MAX_N]; 
    bool operator < (const Query &lhs, const Query &rhs) { 
    	if (bel[lhs.l] == bel[rhs.l]) return (bel[lhs.l] & 1) ? lhs.r < rhs.r : lhs.r > rhs.r; 
    	else return bel[lhs.l] < bel[rhs.l]; 
    } 
    int stk[MAX_N], top, lp[MAX_N], rp[MAX_N]; 
    int st[18][MAX_N], bin[18], lg[MAX_N]; 
    int query(int l, int r) { 
    	int k = lg[r - l + 1]; 
    	if (a[st[k][l]] < a[st[k][r - bin[k] + 1]]) return st[k][l]; 
    	else return st[k][r - bin[k] + 1]; 
    } 
    ll L[MAX_N], R[MAX_N], ans[MAX_N], Ans; 
    ll Ladd(int l, int r) { 
    	int p = query(l - 1, r); 
    	return 1ll * a[p] * (r - p + 1) + R[l - 1] - R[p]; 
    } 
    ll Radd(int l, int r) { 
    	int p = query(l, r + 1); 
    	return 1ll * a[p] * (p - l + 1) + L[r + 1] - L[p]; 
    } 
    
    int main () { 
    #ifndef ONLINE_JUDGE 
        freopen("cpp.in", "r", stdin); 
    	freopen("cpp.out", "w", stdout); 
    #endif 
    	N = gi(), Q = gi(); 
    	for (int i = 1; i <= N; i++) a[i] = gi(); 
    	for (int i = 1; i <= N; i++) bel[i] = (i - 1) / LEN + 1; 
    	bin[0] = 1; for (int i = 1; i <= 17; i++) bin[i] = bin[i - 1] << 1; 
    	for (int i = 2; i <= N; i++) lg[i] = lg[i >> 1] + 1;
    	for (int i = 1; i <= N; i++) st[0][i] = i; 
    	for (int i = 1; bin[i] <= N; i++) 
    		for (int j = 1; j + bin[i] - 1 <= N; j++) 
    			if (a[st[i - 1][j]] < a[st[i - 1][j + bin[i - 1]]]) st[i][j] = st[i - 1][j]; 
    			else st[i][j] = st[i - 1][j + bin[i - 1]]; 
    	for (int i = 1; i <= Q; i++) { 
    		int l = gi(), r = gi(); 
    		q[i] = (Query){l, r, i}; 
    	} 
    	sort(&q[1], &q[Q + 1]); 
    	stk[0] = 0; 
    	for (int i = 1; i <= N; i++) { 
    		while (a[stk[top]] >= a[i] && top) --top; 
    		lp[i] = stk[top], stk[++top] = i; 
    	} 
    	top = 0, stk[0] = N + 1; 
    	for (int i = N; i >= 1; i--) { 
    		while (a[stk[top]] > a[i] && top) --top; 
    		rp[i] = stk[top], stk[++top] = i; 
    	} 
    	for (int i = 1; i <= N; i++) L[i] = L[lp[i]] + 1ll * (i - lp[i]) * a[i]; 
    	for (int i = N; i >= 1; i--) R[i] = R[rp[i]] + 1ll * (rp[i] - i) * a[i]; 
    	int ql = 1, qr = 0; 
    	for (int i = 1; i <= Q; i++) {
    		while (qr < q[i].r) ++qr, Ans += Radd(ql, qr - 1); 
    		while (ql < q[i].l) Ans -= Ladd(ql + 1, qr), ++ql; 
    		while (ql > q[i].l) --ql, Ans += Ladd(ql + 1, qr); 
    		while (qr > q[i].r) Ans -= Radd(ql, qr - 1), --qr;
    		ans[q[i].id] = Ans; 
    	} 
    	for (int i = 1; i <= Q; i++) printf("%lld
    ", ans[i]); 
        return 0; 
    } 
    
  • 相关阅读:
    【scala语言入门】二、匿名函数
    【scala语言入门】 一、apply与unapply
    关于timeOut超时后是否会回滚的思考
    [算法]-插入排序
    【oenCV系列】 写视频
    【Opencv系列】
    Factory Method模式精解(C++版本)
    Template Method模式精解(C++版本)
    Adapter模式精解(C++版本)
    迭代器模式精解(C++版本)
  • 原文地址:https://www.cnblogs.com/heyujun/p/10447448.html
Copyright © 2020-2023  润新知