• 【LG3240】[HNOI2015]实验比较


    题面

    洛谷

    题解

    30pts

    爆搜即可。

    100pts

    题意描述里有一句:"对每张图片(i),小(D)都最多只记住了某一张质量不比(i)差的另一张图片(K_i)。"

    即只有一个父亲,且(mleq n),所以建树,容易想到树形(dp)

    对于"(=)"的,直接用并查集将之看成一个点,

    对于"(<)"的,将小的连一条到大的点的边,

    然后不一定是一棵树,可能是森林,所以建一个超级根节点连起来。

    (f[u][i])表示以(u)为根,分成(i)段(即共有(y-1)个小于,每个小于两边所有图片质量相等)的方案数,

    按照树形(dp)转移,则有

    [f[u][i]=sum f'[u][j] imes f[v][k] imes num ]

    (num)表示将(j)段和(k)段合并的方案数,如何求呢?

    (f[u])的质量序列为(A)(f'[u])的质量序列为(B)(f[v])的质量序列为(C)

    (A)中的每一段可以只包含(B)中的一段,可以只包含(C)中的一段,也可以有(B)(C)中各一段合并而成,但不能为空。特殊地,(A)的第一段只能包含节点(u)

    因为(f[u])(f'[u])都包含(u)那一段,所以相当于从(i-1)中选(j-1)个合并,方案数为(C_{i-1}^{j-1})
    然后把(C)中的(i-j)段放到(A)中剩下的位置,使每一段都不为空。现在(C)中还剩下(k-i+j)个段,他们需要与(B)中的段合并,方案数为(C_{j-1}^{k-i+j})

    [ herefore num=C_{i-1}^{j-1} imes C_{j-1}^{k-i+j} ]

    然后

    [Ans=sum f[n+1][i] ]

    最后复杂度为(O(n^3))

    代码

    #include <iostream> 
    #include <cstdio> 
    #include <cstdlib> 
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    using namespace std; 
    const int Mod = 1e9 + 7; 
    const int MAX_N = 105; 
    struct Graph { int to, next; } e[MAX_N << 1]; int fir[MAX_N], e_cnt; 
    void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; } 
    void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}; fir[u] = e_cnt++; }
    int pa[MAX_N]; 
    int getf(int x) { return pa[x] == x ? x : pa[x] = getf(pa[x]); } 
    int N, M, X[MAX_N], Y[MAX_N], cnt[MAX_N], C[MAX_N][MAX_N]; 
    bool isroot[MAX_N];
    int f[MAX_N][MAX_N], size[MAX_N];
    void dfs(int x) { 
    	size[x] = f[x][1] = 1; 
    	for (int i = fir[x]; ~i; i = e[i].next) {
    		int v = e[i].to; dfs(v);
    		size[x] += size[v];
    		for (int j = size[x]; j >= 1; j--) {
    			int res = 0; 
    			for (int k = 1; k <= min(size[x] - size[v], j); k++)
    				for (int l = max(1, j - k); l <= size[v]; l++) 
    					res = (res + 1ll * f[x][k] * f[v][l] % Mod 
    						   * C[j - 1][k - 1] % Mod
    						   * C[k - 1][l - j + k] % Mod) % Mod;
    			f[x][j] = res;
    		} 
    	} 
    } 
    int main () { 
    #ifndef ONLINE_JUDGE 
        freopen("cpp.in", "r", stdin); 
    #endif
    	clearGraph(); 
    	scanf("%d%d", &N, &M);
    	C[0][0] = 1;
        for (int i = 1; i <= N + 1; i++) C[i][0] = 1, C[i][i] = 1;
        for (int i = 2; i <= N + 1; i++) 
            for (int j = 1; j < i; j++)
                C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % Mod; 
    	for (int i = 1; i <= N; i++) pa[i] = i;
    	
    	for (int i = 1; i <= M; i++) { 
    		char ch[5]; 
    		scanf("%d%s%d", X + i, ch, Y + i); 
    		if (ch[0] == '=') pa[getf(Y[i])] = getf(X[i]); 
    	} 
    	for (int i = 1; i <= M; i++) X[i] = getf(X[i]), Y[i] = getf(Y[i]); 
    	for (int i = 1; i <= M; i++) { 
    		if (X[i] == Y[i]) continue; 
    		if (getf(X[i]) != getf(Y[i])) {
    			Add_Edge(X[i], Y[i]), cnt[Y[i]]++, isroot[X[i]] = 1; 
    			pa[getf(Y[i])] = getf(X[i]); 
    		} else return puts("0") & 0; 
    	} 
    	for (int i = 1; i <= N; i++) if (isroot[i] && !cnt[i]) Add_Edge(N + 1, i); 
    	dfs(N + 1);
    	int ans = 0;
    	for (int i = 1; i <= size[N + 1]; i++) ans = (ans + f[N + 1][i]) % Mod;
    	printf("%d
    ", ans); 
        return 0; 
    } 
    
  • 相关阅读:
    git push&pull命令详解
    Git常用命令总结
    SpringBoot入门之事件监听
    SpringBoot整合Redis
    十九:JDBC操作事务
    十八:使用JDBC进行批处理
    十七:使用JDBC处理MySQL大数据
    十六:使用JDBC对数据库进行CRUD
    十五:JDBC学习入门
    SpringBoot使用@Scheduled创建定时任务
  • 原文地址:https://www.cnblogs.com/heyujun/p/10435948.html
Copyright © 2020-2023  润新知