• 【LG3703】[SDOI2017]树点涂色


    【LG3703】[SDOI2017]树点涂色

    题面

    洛谷

    题解

    一次只能染根到(x),且染的颜色未出现过

    这句话是我们解题的关键。

    (x)到根的颜色数为(f(x)),则(u)(v)的颜色数:(f(u)+f(v)-f(lca_{u,v})+1)

    想一想,为什么?

    很显然,如果没有(1)操作,我们直接树剖维护一下就可以了。

    但是现在有了(1)操作。。。

    这个(1)操作,其实是拉一条从(x)到根的链,染成一种颜色

    这是不是很像(LCT)(access)呢?

    这样的话,我们就搞一颗(LCT)(access)时,

    因为每断一颗子树,那棵子树内必然要多加一个颜色段就是一个子树加,

    每连上一颗子树,那棵子树内必然重复一个颜色段就是一个子树减。

    那么我们用树剖维护每个点的(f(x))

    并魔改一下(access)即可

    代码:

    #include <iostream> 
    #include <cstdio> 
    #include <cstdlib> 
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    using namespace std; 
    inline int gi() { 
        register int data = 0, w = 1; 
        register char ch = 0; 
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar(); 
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
        return w * data; 
    } 
    const int MAX_N = 1e5 + 5; 
    struct Graph { int to, next; } e[MAX_N << 1]; int fir[MAX_N], e_cnt; 
    void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; } 
    void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}, fir[u] = e_cnt++; } 
    int N, M; 
    int dfn[MAX_N], L[MAX_N], R[MAX_N], top[MAX_N]; 
    int dep[MAX_N], fa[MAX_N], son[MAX_N], size[MAX_N], tim; 
    void dfs1(int x) { 
    	dep[x] = dep[fa[x]] + 1, size[x] = 1; 
    	for (int i = fir[x]; ~i; i = e[i].next) { 
    		int v = e[i].to; if (v == fa[x]) continue; 
    		fa[v] = x; dfs1(v); size[x] += size[v]; 
    		if (size[son[x]] < size[v]) son[x] = v; 
    	} 
    } 
    void dfs2(int x, int tp) { 
    	top[x] = tp, L[x] = ++tim, dfn[tim] = x; 
    	if (son[x]) dfs2(son[x], tp); 
    	for (int i = fir[x]; ~i; i = e[i].next) { 
    		int v = e[i].to; if (v == fa[x] || v == son[x]) continue; 
    		dfs2(v, v); 
    	} 
    	R[x] = tim; 
    }
    int LCA(int x, int y) {
    	while (top[x] != top[y]) { 
    		if (dep[top[x]] < dep[top[y]]) swap(x, y); 
    		x = fa[top[x]]; 
    	} 
    	return dep[x] < dep[y] ? x : y; 
    } 
    #define lson (o << 1) 
    #define rson (o << 1 | 1) 
    int val[MAX_N << 2], tag[MAX_N << 2];
    void pushup(int o) { val[o] = max(val[lson], val[rson]); } 
    void puttag(int o, int v) { tag[o] += v; val[o] += v; } 
    void pushdown(int o, int l, int r) {
    	if (l == r || !tag[o]) return ; 
    	puttag(lson, tag[o]); 
    	puttag(rson, tag[o]); 
    	tag[o] = 0; 
    } 
    void build(int o, int l, int r) { 
    	if (l == r) return (void)(val[o] = dep[dfn[l]]); 
    	int mid = (l + r) >> 1; 
    	build(lson, l, mid), build(rson, mid + 1, r); 
    	pushup(o); 
    } 
    void modify(int o, int l, int r, int ql, int qr, int v) {  
    	if (ql <= l && r <= qr) return (void)(puttag(o, v)); 
    	pushdown(o, l, r); 
    	int mid = (l + r) >> 1; 
    	if (ql <= mid) modify(lson, l, mid, ql, qr, v);
    	if (qr > mid) modify(rson, mid + 1, r, ql, qr, v); 
    	pushup(o); 
    } 
    int query(int o, int l, int r, int ql, int qr) { 
    	pushdown(o, l, r); 
    	if (ql <= l && r <= qr) return val[o]; 
    	int mid = (l + r) >> 1, res = 0; 
    	if (ql <= mid) res = max(res, query(lson, l, mid, ql, qr)); 
    	if (qr > mid) res = max(res, query(rson, mid + 1, r, ql, qr));
    	return res; 
    } 
    
    struct Node { int ch[2], fa; bool rev; } t[MAX_N]; 
    bool get(int x) { return t[t[x].fa].ch[1] == x; } 
    bool nroot(int x) { return t[t[x].fa].ch[0] == x || t[t[x].fa].ch[1] == x; } 
    void rotate(int x) { 
    	int y = t[x].fa, z = t[y].fa, k = get(x); 
    	if (nroot(y)) t[z].ch[get(y)] = x; 
    	t[x].fa = z; 
    	t[t[x].ch[k ^ 1]].fa = y, t[y].ch[k] = t[x].ch[k ^ 1]; 
    	t[y].fa = x, t[x].ch[k ^ 1] = y; 
    } 
    void splay(int x) { 
    	while (nroot(x)) { 
    		int y = t[x].fa; 
    		if (nroot(y)) get(x) ^ get(y) ? rotate(x) : rotate(y);
    		rotate(x); 
    	} 
    } 
    int findroot(int x) { while (t[x].ch[0]) x = t[x].ch[0]; return x; } 
    void access(int x) { 
    	for (int y = 0; x; y = x, x = t[x].fa) { 
    		splay(x); 
    		if (t[x].ch[1]) {
    			int rt = findroot(t[x].ch[1]);
    			modify(1, 1, N, L[rt], R[rt], 1); 
    		}
    		t[x].ch[1] = y; 
    		if (t[x].ch[1]) {
    			int rt = findroot(t[x].ch[1]); 
    			modify(1, 1, N, L[rt], R[rt], -1); 
    		} 
    	} 
    } 
    
    int main () { 
    	clearGraph(); 
    	N = gi(), M = gi(); 
    	for (int i = 1; i < N; i++) {
    		int u = gi(), v = gi(); 
    		Add_Edge(u, v); 
    		Add_Edge(v, u); 
    	} 
    	dfs1(1), dfs2(1, 1); 
    	for (int x = 2; x <= N; x++) t[x].fa = fa[x]; 
    	build(1, 1, N);
    	
    	while (M--) { 
    		int op = gi(); 
    		if (op == 1) access(gi()); 
    		if (op == 2) {
    			int u = gi(), v = gi(), lca = LCA(u, v); 
    			printf("%d
    ", query(1, 1, N, L[u], L[u]) + query(1, 1, N, L[v], L[v]) 
    				- 2 * query(1, 1, N, L[lca], L[lca]) + 1); 
    		} 
    		if (op == 3) {
    			int x = gi(); 
    			printf("%d
    ", query(1, 1, N, L[x], R[x])); 
    		} 
    	} 
    	return 0; 
    } 
    
  • 相关阅读:
    解决Metasploit中shell乱码的问题
    AWVS扫描器的用法
    AWVS扫描器的用法
    AppScan扫描器的用法
    AppScan扫描器的用法
    Nessus扫描器的使用
    IPC$共享和其他共享(C$、D$)
    IPC$共享和其他共享(C$、D$)
    Windows中动态磁盘管理
    Windows中动态磁盘管理
  • 原文地址:https://www.cnblogs.com/heyujun/p/10360047.html
Copyright © 2020-2023  润新知