• 【BZOJ3527】[ZJOI2014]力


    【BZOJ3527】[ZJOI2014]力

    题面

    bzoj

    洛谷

    题解

    易得

    [E_i=sum_{j<i}frac{q_j}{(i-j)^2}-sum_{j>i}frac{q_j}{(i-j)^2} ]

    (f_i=q_i)(g_i=i^2)

    [E_i=sum_{j<i}f_jg_{i-j}-sum_{j>i}f_jg_{i-j} ]

    (f)翻转得到(h)

    [E_i=sum_{j<i}f_jg_{i-j}-sum_{j<i}h_jg_{i-j} ]

    这™就是两个卷积啊。。。

    就分别(FFT)求出两个卷积然后一减即可

    代码

    #include <iostream> 
    #include <cstdio> 
    #include <cstdlib> 
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    #include <complex> 
    using namespace std;
    #define sqr(x) (1.0 * (x) * (x)) 
    typedef complex<double> Complex;
    const double PI = acos(-1.0); 
    const int MAX_N = 3e5 + 5;
    int n, N, M, P, r[MAX_N]; 
    double q[MAX_N], ans[MAX_N]; 
    Complex a[MAX_N], b[MAX_N]; 
    void FFT(Complex *p, int op) { 
    	for (int i = 0; i < N; i++) if (i < r[i]) swap(p[i], p[r[i]]); 
    	for (int i = 1; i < N; i <<= 1) {
    		Complex rot(cos(PI / i), op * sin(PI / i));
    		for (int j = 0; j < N; j += (i << 1)) { 
    			Complex w(1, 0); 
    			for (int k = 0; k < i; k++, w *= rot) { 
    				Complex x = p[j + k], y = w * p[i + j + k]; 
    				p[j + k] = x + y, p[i + j + k] = x - y; 
    			} 
    		} 
    	} 
    }
    
    int main () {
    	scanf("%d", &n); 
    	for (int i = 1; i <= n; i++) scanf("%lf", &q[i]); 
    	N = M = n - 1;
    	for (int i = 0; i <= N; i++) a[i] = q[i + 1], b[i] = 1.0 / sqr(i + 1);
    	M += N; 
    	for (N = 1; N <= M; N <<= 1, ++P) ; 
    	for (int i = 0; i < N; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
    	FFT(a, 1); FFT(b, 1); 
    	for (int i = 0; i <= N; i++) a[i] = a[i] * b[i]; 
    	FFT(a, -1); 
    	for (int i = 2; i <= n; i++) ans[i] += (double)(a[i - 2].real() / N); 
    	for (int i = 0; i <= N; i++) a[i].real() = b[i].real() = a[i].imag() = b[i].imag() = 0;
    	for (int i = 0; i < n; i++) a[i] = q[n - i], b[i] = 1.0 / sqr(i + 1); 
    	FFT(a, 1); FFT(b, 1); 
    	for (int i = 0; i <= N; i++) a[i] = a[i] * b[i]; 
    	FFT(a, -1);
    	for (int i = n - 1; i; i--) ans[i] -= (double)(a[n - i - 1].real() / N);
    	for (int i = 1; i <= n; i++) printf("%0.3lf
    ", ans[i]); 
    	return 0; 
    } 
    
  • 相关阅读:
    flush()方法
    多对一关联映射(manytoone)
    Hibernate配置数据库解决插入乱码问题
    lazy
    一对多关联映射(单向)
    属性类的映射
    多对多关联(双向)
    多对多关联映射(单向)
    多态查询
    Visual C# 2008+SQL Server 2005 数据库与网络开发11.2.2 LINQ的基本查询操作
  • 原文地址:https://www.cnblogs.com/heyujun/p/10198946.html
Copyright © 2020-2023  润新知