• 【BZOJ4803】逆欧拉函数


    【BZOJ4803】逆欧拉函数

    题面

    bzoj

    题解

    题目是给定你(varphi(n))要求前(k)小的(n)

    (n=prod_{i=1}^k{p_i}^{c_i})

    (varphi(n)=prod_{i=1}^k{p_i}^{c_i-1}(p_i-1))

    然后我们猜一下这个(n)不是很多,事实上(n)不超过(50w)个。

    考虑暴力(dfs)出所有的(n)

    首先筛出(sqrt{varphi(n)})内的素数

    对于当前(dfs)的值(phi)

    (phi)中的约数有没有(筛出的素数-1)

    若有,假设该素数为(p)

    去除(phi)中的所有(p),之后再将(dfs)(n)累乘上(p)

    在每一次递归开头用(miller)_(Rabin)判断(phi+1)是否为素数,如果是,则直接加进答案就行了

    想一想,为什么?

    代码

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring> 
    #include <cmath> 
    #include <algorithm>
    #include <ctime> 
    using namespace std;
    typedef long long ll; 
    const int MAX_N = 1e7 + 5; 
    const int T = 10; 
    bool is_prime[MAX_N]; 
    int prime[MAX_N], num, K;
    ll N = 1e7, ans[MAX_N], cnt_ans; 
    void sieve() { 
    	for (int i = 1; i <= N; i++) is_prime[i] = 1; 
    	is_prime[1] = 0; 
    	for (int i = 2; i <= N; i++) { 
    		if (is_prime[i]) prime[++num] = i; 
    		for (int j = 1; prime[j] * i <= N && j <= num; j++) { 
    			is_prime[i * prime[j]] = 0;
    			if (!(i % prime[j])) break; 
    		} 
    	} 
    } 
    ll fmul(ll x, ll y, ll Mod) {
    	ll res = 0;
    	while (y) {
    		if (y & 1ll) res = (res + x) % Mod; 
    	    y >>= 1ll; 
    		x = (x + x) % Mod; 
    	}
    	return res; 
    } 
    ll fpow(ll x, ll y, ll Mod) {
    	ll res = 1; 
    	while (y) {
    		if (y & 1ll) res = fmul(res, x, Mod);
    		y >>= 1ll; 
    		x = fmul(x, x, Mod); 
    	}
    	return res; 
    } 
    bool Test(ll a, ll n) {
    	ll r = 0, t = n - 1, m; 
    	while ((t & 1ll) == 0) ++r, t >>= 1ll;
    	m = (n - 1) / (1ll << r); 
    	for (int i = 0; i < r; i++) if (fpow(a, (1ll << i) * m, n) == n - 1) return 1;
    	if (fpow(a, m, n) == 1) return 1; 
    	return 0; 
    } 
    bool Miller_Rabin(ll n) {
    	if (n == 2ll) return 1; 
    	if (n < 2ll || ((n & 1ll) == 0)) return 0; 
    	for (int i = 1; i <= T; i++) { 
    		ll a = rand() % (n - 2) + 2;
    		if (fpow(a, n - 1, n) != 1) return 0;
    		if (!Test(a, n)) return 0; 
    	}
    	return 1; 
    }
    void solve(ll phi, ll n, int lst) { 
    	if (phi + 1 > prime[num] && Miller_Rabin(phi + 1))
    		ans[++cnt_ans] = n * (phi + 1); 
    	for (int i = lst; i; i--) {
    		if (!(phi % (prime[i] - 1))) {
    			ll t1 = phi / (prime[i] - 1), t2 = n, t3 = 1ll; 
    			while (!(t1 % t3)) { 
    				t2 *= prime[i];
    				solve(t1 / t3, t2, i - 1); 
    				t3 *= prime[i]; 
    			} 
    		} 
    	}
    	if (phi == 1ll) ans[++cnt_ans] = n; 
    } 
    int main () {
    	srand(time(NULL)); 
    	sieve(); 
    	cin >> N >> K;
    	solve(N, 1ll, num); 
    	sort(&ans[1], &ans[cnt_ans + 1]);
    	for (int i = 1; i < K; i++) printf("%lld ", ans[i]);
    	printf("%lld
    ", ans[K]); 
    	return 0; 
    } 
    
  • 相关阅读:
    面试官:HashMap死循环形成的原因是什么?
    这几个IDEA高级调试技巧,用完就是香
    图示JVM工作原理
    写二进制,姿势一定要骚,省字段,省带宽,提效率...
    阿里大佬总结的40个多线程面试题,你能答上来几个?
    全网最全RabbitMQ总结,别再说你不会RabbitMQ
    .NETCore微服务探寻(三)
    .NETCore微服务探寻(二)
    .NETCore微服务探寻(一)
    谈谈spring-boot-starter-data-redis序列化
  • 原文地址:https://www.cnblogs.com/heyujun/p/10189121.html
Copyright © 2020-2023  润新知