【BZOJ1045】[HAOI2008]糖果传递
题面
题解
根据题意,我们可以很容易地知道最后每个人的糖果数(ave)
设第(i)个人给第(i-1)个人(X_i)个糖果((i=1)则表示第1个人个第(n)个人,(X_i<0)则表示(i-1)给(i)糖果(-X_i))
由题,第一个人最后(A_1-X_1+X_2=ave)个
(Rightarrow x_2=ave-A_1+X_1)(设(C_1=A_1-ave),下面同理)
(Rightarrow x_2=x_1-C_1)
(Rightarrow x_3=x_1-C_2)
(......)
(Rightarrow x_n=x_1-C_{n-1})
题目变为求(x_1)使(|x1|+|x1-c_1|+|x_1-c_2|+...+|x_1-c_{n-1}|)最小
可知(x_1)取中间值时原式最小
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAX_N = 1e6 + 5;
int N;
ll A[MAX_N], C[MAX_N], tot, M;
int main () {
while (scanf("%d", &N) != EOF) {
tot = 0;
for (int i = 1; i <= N; i++) { scanf("%lld", &A[i]); tot += A[i]; }
M = tot / N;
C[0] = 0;
for (int i = 1; i < N; i++) C[i] = C[i - 1] + A[i] - M;
sort(&C[0], &C[N]);
ll mid = C[N / 2], ans = 0;
for (int i = 0; i < N; i++) ans += abs(mid - C[i]);
printf("%lld
", ans);
}
return 0;
}