【BZOJ3110】【LG3332】[ZJOI2013]K大数查询
题面
题解
和普通的整体分治差不多
用线段树维护一下每个查询区间内大于每次二分的值(mid)的值即可
然后再按套路做就行了
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (ch != '-' && (ch > '9' || ch < '0')) ch = getchar();
if (ch == '-') w = -1 , ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return w * data;
}
typedef long long ll;
const int MAX_N = 50005;
#define lson (o << 1)
#define rson (o << 1 | 1)
struct SGT {
bool clr; int tag; ll val;
void clear() { clr = 0, tag = val = 0; }
} t[MAX_N << 2];
int N, M, ans[MAX_N];
void puttag(int o, int l, int r, int w) {
t[o].val += 1ll * w * (r - l + 1);
t[o].tag += w;
}
void clear(int o) {
if (t[o].clr) {
t[lson].clear(), t[rson].clear();
t[lson].clr = t[rson].clr = 1;
t[o].clr = 0;
}
}
void pushdown(int o, int l, int r) {
if (l == r) return ;
int mid = (l + r) >> 1;
clear(o);
puttag(lson, l, mid, t[o].tag);
puttag(rson, mid + 1, r, t[o].tag);
t[o].tag = 0;
}
void modify(int o, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) return (void)puttag(o, l, r, 1);
pushdown(o, l, r);
int mid = (l + r) >> 1;
if (ql <= mid) modify(lson, l, mid, ql, qr);
if (qr > mid) modify(rson, mid + 1, r, ql, qr);
t[o].val = t[lson].val + t[rson].val;
}
ll query(int o, int l, int r, int ql, int qr) {
pushdown(o, l, r);
if (ql <= l && r <= qr) return t[o].val;
int mid = (l + r) >> 1; ll res = 0;
if (ql <= mid) res += query(lson, l, mid, ql, qr);
if (qr > mid) res += query(rson, mid + 1, r, ql, qr);
return res;
}
struct Query { int op, x, y; ll z; } q[MAX_N], lq[MAX_N], rq[MAX_N];
void Div(int lval, int rval, int st, int ed) {
if (st > ed) return ;
if (lval == rval) {
for (int i = st; i <= ed; i++)
if (q[i].op != 0) ans[q[i].op] = lval;
return ;
}
int mid = (lval + rval) >> 1;
int lt = 0, rt = 0;
for (int i = st; i <= ed; i++) {
if (q[i].op == 0) {
if (q[i].z <= mid) lq[++lt] = q[i];
else {
rq[++rt] = q[i];
modify(1, 1, N, q[i].x, q[i].y);
}
} else {
ll res = query(1, 1, N, q[i].x, q[i].y);
if (res >= q[i].z) rq[++rt] = q[i];
else q[i].z -= res, lq[++lt] = q[i];
}
}
for (int i = 1; i <= lt; i++) q[i + st - 1] = lq[i];
for (int i = 1; i <= rt; i++) q[i + lt + st - 1] = rq[i];
t[1].clear(); t[1].clr = 1;
Div(lval, mid, st, st + lt - 1);
Div(mid + 1, rval, st + lt, ed);
}
int main () {
int tot = 0;
N = gi(), M = gi();
for (int i = 1; i <= M; i++) {
q[i].op = gi() - 1;
q[i].x = gi(), q[i].y = gi(), q[i].z = gi();
if (q[i].op) q[i].op = ++tot;
}
Div(-N, N, 1, M);
for (int i = 1; i <= tot; i++) printf("%d
", ans[i]);
return 0;
}