• HDU2819:Swap(二分图匹配)


    Swap

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4932    Accepted Submission(s): 1836
    Special Judge

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2819

    Description:

    Given an N*N matrix with each entry equal to 0 or 1. You can swap any two rows or any two columns. Can you find a way to make all the diagonal entries equal to 1?

    Input:

    There are several test cases in the input. The first line of each test case is an integer N (1 <= N <= 100). Then N lines follow, each contains N numbers (0 or 1), separating by space, indicating the N*N matrix.

    Output:

    For each test case, the first line contain the number of swaps M. Then M lines follow, whose format is “R a b” or “C a b”, indicating swapping the row a and row b, or swapping the column a and column b. (1 <= a, b <= N). Any correct answer will be accepted, but M should be more than 1000.

    If it is impossible to make all the diagonal entries equal to 1, output only one one containing “-1”.

    Sample Input:

    2
    0 1
    1 0
    2
    1 0
    1 0
    Sample Output:
    1
    R 1 2
    -1
    题意:
    通过交换行和列,使左上角到右下角的对角线都为1。
     
    题解:
    左上角到右下角的对角线坐标为(i,i),横纵坐标相等,这是一个特性。我们要做的就是通过交换,使1的横纵坐标相等。
    考虑最终的情况,对角线上的1横纵坐标都相等,这在二分图中,就相当于1-1,2-2...n-n,相当于两边集合都是平行相连的。
    通过这里可以想到二分图的最大匹配就为n,如果小于n,无论怎样,都不能做到一一平行相连。
    那么可行性就可以通过二分图最大匹配判定。
    输出方案还是挺有意思的,最终的状态是平行相连,那么我就考虑dfs过后的match数组,不水平的连成水平就行了。
     
    代码如下:
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    
    const int N = 105 ;
    int map[N][N],link[N][N],match[N],check[N],r[N],a[N],b[N];
    int n,ans,tot;
    
    inline void init(){
        memset(map,0,sizeof(map));memset(link,0,sizeof(link));
        memset(match,-1,sizeof(match));ans=0;tot=0;
        memset(a,0,sizeof(a));memset(b,0,sizeof(b));
    }
    
    inline int dfs(int x){
        for(int i=1;i<=n;i++){
            if(link[x][i] && !check[i]){
                check[i]=1;
                if(match[i]==-1 || dfs(match[i])){
                    match[i]=x;
                    return 1;
                }
            }
        } 
        return 0;
    } 
    
    inline void Swap(){
        for(int i=1;i<=n;i++){
            if(match[i]!=i){
                a[++tot]=i;b[tot]=match[i];
                for(int j=1;j<=n;j++){
                    if(match[j]==i){
                        swap(match[i],match[j]);
                        break ;
                    }
                }
            }
        }
    }
    
    int main(){
        while(scanf("%d",&n)!=EOF){
            init();
            for(int i=1;i<=n;i++){
                for(int j=1;j<=n;j++){
                    scanf("%d",&map[i][j]);
                    if(map[i][j]) link[i][j]=1;
                }
            }
            for(int i=1;i<=n;i++){
                memset(check,0,sizeof(check));
                if(dfs(i)) ans++;
            }
            if(ans!=n){
                puts("-1");continue ;
            }
            Swap();
            printf("%d
    ",tot);
            for(int i=1;i<=tot;i++) printf("R %d %d
    ",a[i],b[i]);
        }
        return 0;
    }
  • 相关阅读:
    Spring三大器
    SpringBoot启动过程
    linux常用命令
    Controller当中的参数与返回值
    Spring加载context的几种方法
    Spring基础(imooc)
    SpringMVC框架学习
    Spring MVC(imooc)
    springAOP基础
    《别傻了,你的中年危机真不是因为穷》
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/9917077.html
Copyright © 2020-2023  润新知