题意:
给出(n)个重要点,还有其余(m)个点,(p)条边。
现在要在这(n+m)个点中挖几口水井,每个地方的费用为(w_i)。连接边也有费用。
问使得这(n)个地点都有水井(或直接、间接与水井相连)的最小代价。
思路:
有点巧妙。。建立一个虚点连向所有点,边权为(w_i)。然后直接求以(0)为根的斯坦纳树即可,最后再子集(dp)一下就行。
原理就是,此时这(n)个点连通,并且以(0)为根,脑补一下即可发现:要么直接与(0)相连,要么间接相连,直接相连就是这里挖井,间接相连的话就是通过其它地方引水。
代码如下:
/*
* Author: heyuhhh
* Created Time: 2019/11/27 14:23:05
*/
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <iomanip>
#include <queue>
#include <cstdio>
#include <cstring>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '
'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '
'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 1010, M = 10005, P = 6;
int n, m, p;
struct Edge {
int v, w, next;
}e[M << 1];
int head[N], tot;
void adde(int u, int v, int w) {
e[tot].v = v; e[tot].w = w; e[tot].next = head[u]; head[u] = tot++;
}
int dp[N][1 << P];
queue <int> q;
bool in[N];
void spfa(int s) {
while(!q.empty()) {
int u = q.front(); q.pop(); in[u] = 0;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(dp[v][s] > dp[u][s] + e[i].w) {
dp[v][s] = dp[u][s] + e[i].w;
if(!in[v]) q.push(v), in[v] = 1;
}
}
}
}
int g[1 << P];
void run(){
memset(head, -1, sizeof(head)); tot = 0;
for(int i = 1; i <= n + m; i++) {
int w; cin >> w;
adde(0, i, w);
adde(i, 0, w);
}
for(int i = 1; i <= p; i++) {
int u, v, w; cin >> u >> v >> w;
adde(u, v, w); adde(v, u, w);
}
memset(dp, INF, sizeof(dp));
memset(g, INF, sizeof(g));
for(int i = 1; i <= n; i++) {
dp[i][1 << (i - 1)] = 0;
}
int lim = (1 << n);
for(int S = 1; S < lim; S++) {
for(int i = 0; i <= n + m; i++) {
for(int s = (S - 1) & S; s; s = (s - 1) & S) {
dp[i][S] = min(dp[i][S], dp[i][s] + dp[i][S - s]);
}
if(dp[i][S] < INF) q.push(i), in[i] = 1;
}
spfa(S);
g[S] = dp[0][S];
}
for(int S = 1; S < lim; S++) {
for(int s = (S - 1) & S; s; s = (s - 1) & S) {
g[S] = min(g[S], g[s] + g[S - s]);
}
}
cout << g[lim - 1] << '
';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n >> m >> p) run();
return 0;
}