题意:
给出一个以(1)为根的有根树,起始每个结点都为(0),现在有三种操作:
- 1.将(v)及(v)的子树都置为(1);
- 2.将(v)及其所有的祖先都置为(0);
- 3.询问(v)目前处于何种状态。
对于每次询问给出回答。
思路:
- 对于(1)操作,子树修改,显然(dfs)序+线段树即可解决。
- (2)操作除开树链剖分这种,很难去高效维护。但是注意到如果一个结点(v)为(0),那么其所有祖先都为(0)。那么对于(2)操作,直接单点修改,在操作(1)子树修改之前先看看子树中是否含有(0),若含有,则把当前根节点的父亲置为(0)即可。
- 对于(3)操作同(2)操作查询子树最小值即可。
这个题本来想(dsu on tree)来搞,但是感觉离线确实不是很好做,所以写了个在线的方法。
感觉这个方法挺巧妙的,观察到性质之后,并不直接去维护链的信息,有点类似于线段树的懒惰标记,直接将(2)操作转换为单点修改了。
/*
* Author: heyuhhh
* Created Time: 2019/11/15 11:03:07
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '
'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '
'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 500005;
int n;
vector <int> g[N];
int f[N], in[N], out[N], dfn;
void dfs(int u, int fa) {
f[u] = fa;
in[u] = ++dfn;
for(auto v : g[u]) if(v != fa) {
dfs(v, u);
}
out[u] = dfn;
}
int minv[N << 2], lz[N << 2];
void push_down(int o, int l, int r) {
if(lz[o] != -1) {
lz[o << 1] = lz[o << 1|1] = lz[o];
minv[o << 1] = minv[o << 1|1] = lz[o];
lz[o] = -1;
}
}
void build(int o, int l, int r) {
minv[o] = 0; lz[o] = -1;
if(l == r) return;
int mid = (l + r) >> 1;
build(o << 1, l, mid);
build(o << 1|1, mid + 1, r);
}
void upd(int o, int l, int r, int L, int R, int v) {
if(L <= l && r <= R) {
minv[o] = lz[o] = v;
return;
}
push_down(o, l, r);
int mid = (l + r) >> 1;
if(L <= mid) upd(o << 1, l, mid, L, R, v);
if(R > mid) upd(o << 1|1, mid + 1, r, L, R, v);
minv[o] = min(minv[o << 1], minv[o << 1|1]);
}
int query(int o, int l, int r, int L, int R) {
if(L <= l && r <= R) return minv[o];
push_down(o, l, r);
int res = 2;
int mid = (l + r) >> 1;
if(L <= mid) res = query(o << 1, l, mid, L, R);
if(R > mid) res = min(res, query(o << 1|1, mid + 1, r, L, R));
return res;
}
void run(){
for(int i = 1; i < n; i++) {
int u, v; cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
dfs(1, 0);
build(1, 1, n);
int q; cin >> q;
while(q--) {
int op, v; cin >> op >> v;
if(op == 1) {
int Min = query(1, 1, n, in[v], out[v]);
if(Min == 0 && v > 1) {
upd(1, 1, n, in[f[v]], in[f[v]], 0);
}
upd(1, 1, n, in[v], out[v], 1);
} else if(op == 2) {
upd(1, 1, n, in[v], in[v], 0);
} else {
int Min = query(1, 1, n, in[v], out[v]);
if(Min == 0) cout << 0 << '
';
else cout << 1 << '
';
}
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> n) run();
return 0;
}