• UVA10600:ACM Contest and Blackout(次小生成树)


    ACM Contest and Blackout

    题目链接:https://vjudge.net/problem/UVA-10600

    Description:

    In order to prepare the “The First National ACM School Contest” (in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well. You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major — find the cost of the two cheapest connection plans.

    Input:

    The Input starts with the number of test cases, T (1 < T < 15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3 < N < 100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai , Bi , Ci , where Ci is the cost of the connection (1 < Ci < 300) between schools Ai and Bi . The schools are numbered with integers in the range 1 to N.

    Output:

    For every test case print only one line of output. This line should contain two numbers separated by a single space – the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1 = S2 if and only if there are two cheapest plans, otherwise S1 < S2. You can assume that it is always possible to find the costs S1 and S2.

    Sample Input:

    2

    5 8

    1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66

    9 14

    1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10

    Sample Output:

    110 121

    37 37

    题意:

    求次小生成树。

    题解:

    先跑一遍最小生成树,然后O(n^2)预处理出任意两点之间的最小瓶颈路,最后通过枚举算出次小生成树。

    代码如下:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    #include <queue>
    #include <cmath>
    #define INF 0x3f3f3f3f
    using namespace std;
    typedef long long ll;
    const int N = 105;
    int t,n,m;
    struct Edge{
        int u,v,w;
        bool operator < (const Edge &A)const{
            return w<A.w;
        }
    }e[N*N];
    int f[N],mp[N][N];
    int find(int x){
        return f[x]==x?f[x]:f[x]=find(f[x]);
    }
    int Kruskal(){
        int ans=0;
        for(int i=0;i<=n+1;i++) f[i]=i;
        for(int i=1;i<=m;i++){
            int u=e[i].u,v=e[i].v;
            int fx=find(u),fy=find(v);
            if(fx==fy) continue ;
            f[fx]=fy;
            mp[u][v]=mp[v][u]=1;
            ans+=e[i].w;
        }
        return ans ;
    }
    int d[N][N],dis[N][N];
    int check[N];
    void dfs(int u,int fa){
        for(int i=1;i<=n;i++){
            if(check[i]) d[i][u]=d[u][i]=max(d[i][fa],dis[u][fa]);
        }
        check[u]=1;
        for(int i=1;i<=n;i++){
            if(mp[i][u] && i!=fa) dfs(i,u);
        }
    }
    int main(){
        scanf("%d",&t);
        while(t--){
            scanf("%d%d",&n,&m);
            memset(dis,0,sizeof(dis));
            for(int i=1;i<=m;i++){
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                e[i]=Edge{u,v,w};
                dis[u][v]=dis[v][u]=w;
            }
            sort(e+1,e+m+1);
            memset(d,0,sizeof(d));
            memset(check,0,sizeof(check));
            memset(mp,0,sizeof(mp));
            int sum=Kruskal();
            cout<<sum<<" ";
            dfs(1,-1);
            int ans=INF;
            for(int i=1;i<=m;i++){
                int u=e[i].u,v=e[i].v,w=e[i].w;
                if(mp[u][v]) continue ;
                ans=min(ans,sum-d[u][v]+w);
            }
            cout<<ans<<endl;
        }
    
        return 0;
    }
  • 相关阅读:
    MySQL Partition--分区基础
    MySQL Replication--跳过复制错误
    MySQL--SHOW PROCESSLIST
    MySQL InnoDB Engine--缓冲器数据交换
    MySQL InnoDB Engine--数据预热
    MySQL Profiling--常用命令
    Linux--用户管理
    vi和vim快捷键的使用
    vi和vim
    xftp使用
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/10372305.html
Copyright © 2020-2023  润新知