• 爪哇国新游记之二十五----图及其遍历查找


    代码:

    import java.util.ArrayList;
    import java.util.Collections;
    import java.util.HashSet;
    import java.util.LinkedHashMap;
    import java.util.LinkedList;
    import java.util.List;
    import java.util.Map;
    import java.util.Queue;
    import java.util.Set;
    
    
    // 顶点类
    class Vertex{
        String name;// 名称
        boolean visited;// 是否已访问过
        
        public Vertex(String name){
            this.name=name;
            this.visited=false;
        }
    }
    
    // 图类
    public class Graph{
        //
        private Vertex[] arr;// 顶点数组
        private int[][] matrix;// 邻接矩阵
        
        // 建立图的数据
        private Set<String> vertexSet;// 包含不重复顶点的集合
        private Map<String,String[]> connMap;// 包含连接的哈希表
        
        // 添加顶点之间的连接关系
        public void addConn(String from,String[] toArr){
            if(vertexSet==null){
                vertexSet=new HashSet<String>();
            }
            
            vertexSet.add(from);
            for(String to:toArr){
                vertexSet.add(to);
            }
            
            if(connMap==null){
                connMap=new LinkedHashMap<String,String[]>();
            }
            
            connMap.put(from, toArr);
        }
        
        // 建立图(即其中的顶点数组和邻接矩阵)
        public void rebuildGraph(){
            // 初始化顶点数组
            List<String> ls=new ArrayList<String>();
            ls.addAll(vertexSet);
            Collections.sort(ls);
            
            int size=ls.size();
            arr=new Vertex[size];
            for(int i=0;i<ls.size();i++){
                arr[i]=new Vertex(ls.get(i));
            }
            
            // 初始化邻接矩阵
            matrix=new int[size][size];
            for(String key:connMap.keySet()){
                String[] values=connMap.get(key);
                
                for(String value:values){
                    int x=findVertexIndex(key);
                    int y=findVertexIndex(value);
                    
                    if(x!=-1 && y!=-1){
                        matrix[x][y]=1;
                        matrix[y][x]=1;
                    }
                }
            }
        }
        
        // 在顶点数组里找顶点下标
        private int findVertexIndex(String name){
            for(int i=0;i<arr.length;i++){
                if(name.equals(arr[i].name)){
                    return i;
                }
            }
            
            return -1;
        }
        
        public void displayMatix(){
            int n=arr.length;
            
            System.out.print("  ");
            for(int i=0;i<n;i++){
                System.out.print(arr[i].name+",");
            }
            System.out.println();
            
            System.out.print("-");
            for(int i=0;i<n;i++){
                System.out.print("--");
            }
            System.out.println();
            
            for(int i=0;i<n;i++){
                System.out.print(arr[i].name+":");
                
                for(int j=0;j<n;j++){
                    System.out.print(matrix[i][j]+",");
                }
                
                System.out.println();
            }
        }
        
        // 得到两个点之间的路径(深度优先搜索)
        public String getPath(String from,String to){
            resetArr();
            
            // 初始化
            int fromIndex=findVertexIndex(from);
            if(fromIndex==-1){
                return "找不到顶点:"+from;
            }
            
            int toIndex=findVertexIndex(to);
            if(toIndex==-1){
                return "找不到顶点:"+to;
            }
            
            //  用于记住路径的栈
            Stack<Integer> stack=new Stack<Integer>(Integer.class,arr.length);
            
            // 开始寻找
            arr[fromIndex].visited=true;
            stack.push(fromIndex);
            
            while(stack.isEmpty()==false){
                int j=getConnVertex(stack.peek());
                
                if(j==-1){
                    stack.pop();
                }else{
                    arr[j].visited=true;
                    stack.push(j);
                
                    if(arr[j].name.equals(to)){
                        // 找到了
                        
                        StringBuilder sb=new StringBuilder();
                        
                        while(stack.isEmpty()==false){
                            int index=stack.pop();
                            
                            sb.insert(0, arr[index].name+"->");
                        }
                        
                        return sb.substring(0, sb.length()-2);
                    }
                }
            }
            
            return "不可能从"+from+"到"+to;
        }
        
        // 广度优先搜索
        public String getPath2(String from,String to){
            resetArr();
            
            // 初始化
            int fromIndex=findVertexIndex(from);
            if(fromIndex==-1){
                return "找不到顶点:"+from;
            }
            
            int toIndex=findVertexIndex(to);
            if(toIndex==-1){
                return "找不到顶点:"+to;
            }
            
            // 用于记住路径的队列
            Queue<Integer> queue=new LinkedList<Integer>();
            
            // 开始寻找
            StringBuilder sb=new StringBuilder();
            arr[fromIndex].visited=true;
            queue.add(fromIndex);
            sb.append(arr[fromIndex].name+"->");
            int j;
            
            while(queue.isEmpty()==false){
                int i=queue.remove();
                
                while((j=getConnVertex(i))!=-1){
                    arr[j].visited=true;
                    sb.append(arr[j].name+"->");
                    queue.add(j);
                    
                    if(arr[j].name.equals(to)){
                        // 找到了
                        
                        return sb.substring(0, sb.length()-2);
                    }
                }
            }
            
            return "不可能从"+from+"到"+to;
        }
        
        /**
         * 重置顶点访问情况
         */
        private void resetArr(){
            int n=arr.length;
            
            for(int j=0;j<n;j++){
                arr[j].visited=false;
            }
        }
        
        // 取得连接未访问过的顶点
        private int getConnVertex(int i){
            int n=arr.length;
            
            for(int j=0;j<n;j++){
                if(matrix[i][j]==1 && arr[j].visited==false){
                    return j;
                }
            }
            
            return -1;
        }
        
        public static void main(String[] args){
            Graph g=new Graph();
            
            g.addConn("A", new String[]{"B","D"});
            g.addConn("B", new String[]{"A","C"});
            g.addConn("C", new String[]{"B","D","E"});
            g.addConn("D", new String[]{"A","C"});
            g.addConn("E", new String[]{"C"});
            g.addConn("F", new String[]{"E","G"});
            g.addConn("G", new String[]{"F"});
            g.addConn("H", new String[]{"I","J"});
            g.addConn("I", new String[]{"H","J"});
            g.addConn("J", new String[]{"H","I"});
            
            g.rebuildGraph();
            g.displayMatix();
            
            String path=g.getPath("A", "G");
            System.out.println(path);
            
            path=g.getPath("A", "H");
            System.out.println(path);
            
            path=g.getPath("J", "H");
            System.out.println(path);
            
            path=g.getPath("F", "B");
            System.out.println(path);
            
            path=g.getPath2("A", "G");
            System.out.println(path);
            
            path=g.getPath2("F", "B");
            System.out.println(path);
        }
    }

    输出:

      A,B,C,D,E,F,G,H,I,J,
    ---------------------
    A:0,1,0,1,0,0,0,0,0,0,
    B:1,0,1,0,0,0,0,0,0,0,
    C:0,1,0,1,1,0,0,0,0,0,
    D:1,0,1,0,0,0,0,0,0,0,
    E:0,0,1,0,0,1,0,0,0,0,
    F:0,0,0,0,1,0,1,0,0,0,
    G:0,0,0,0,0,1,0,0,0,0,
    H:0,0,0,0,0,0,0,0,1,1,
    I:0,0,0,0,0,0,0,1,0,1,
    J:0,0,0,0,0,0,0,1,1,0,
    A->B->C->E->F->G
    不可能从A到H
    J->H
    F->E->C->B
    A->B->D->C->E->F->G
    F->E->G->C->B

     顶点示意图:

  • 相关阅读:
    个人作业——软件产品案例分析
    软件工程结对作业二
    软件工程团队展示
    软件工程第三次作业
    软件工程实践第二次作业
    软件工程实践第一次作业
    第八次课程作业
    第五次课程作业
    第四次课程作业
    wind本地MySQL数据到hive的指定路径
  • 原文地址:https://www.cnblogs.com/heyang78/p/3885477.html
Copyright © 2020-2023  润新知