• 二叉堆排序


    /**
     * @Information:
     * @Author: HeHaoYuan
     * @Date: Created at 10:40 on 2019/7/31
     * @Package_Name: PACKAGE_NAME
     */
    import java.util.Arrays;
    
    
    public class TestHeap implements IHeap{
    
        private int[] elem;
        private int usedSize;
        private static final int  DEFAULT_SIZE = 10;
    
        public TestHeap(){
            this.elem = new int[DEFAULT_SIZE];
            this.usedSize = 0;
        }
    
        @Override
        //从每棵子树的根节点开始调整,调整的长度len
        public void AdjustDown(int root, int len) {
            int parent = root;
            int child = 2*parent+1;
            while (child < len) {
                //找左右孩子的最大值
                if( child+1 < len && elem[child] < elem[child+1]){
                    //右孩子大,child+1有可能越界
                    ++child;//若右边孩子大,则child指针右移一位,child下标存放的是左右孩子的最大值
                }
                //child下标存放的是左右孩子的最大值
                
                //如果左右孩子的最大值大于父节点,则进行交换
                if(elem[child] > elem[parent]){
                    //交换
                    int tmp = elem[child];
                    elem[child] = elem[parent];
                    elem[parent] = tmp;
                    parent = child;//孩子节点变成了父母节点,parent指向孩子节点,child节点指向左孩子,因为不一定只执行一次
                    child = 2*parent+1;
                }else {
                    break;
                }
            }
        }
        //创建一个大根堆
        @Override
        public void initHeap(int[] array) {
            for (int i = 0; i < array.length; i++) {
                this.elem[i] = array[i];
                this.usedSize++;
            }
    
            //从最后一棵子树的父节点开始向下调整
            //子推父,孩子节点为n,父节点为(n-1)/2
            //父推子,父节点为n,左孩子节点为2n+1,右孩子节点为2n+2
            for (int i = (array.length-1-1)/2; i >= 0 ; i--) {
                AdjustDown(i,this.usedSize);
            }
        }
    
        @Override
        public void AdjustUp(int child) {
            int parent = (child-1)/2;
            while (child > 0){
                if(elem[child] > elem[parent]){
                    int tmp = elem[child];
                    elem[child] = elem[parent];
                    elem[parent] = tmp;
                    //孩子节点变为父节点,父节点向上走
                    child = parent;
                    parent = (child-1)/2;
                }else {
                    break;
                }
            }
        }
        public boolean isFull() {
            return this.usedSize == this.elem.length;
        }
        @Override
        public void pushHeap(int item) {
            if(isFull()){
                //2倍扩容
                this.elem = Arrays.copyOf(this.elem,
                        2*this.elem.length);
            }
            this.elem[this.usedSize] = item;
            this.usedSize++;
            //插入节点后就不是大根堆了,需要向上调整
            AdjustUp(this.usedSize-1);
        }
        public boolean isEmpty() {
            return this.usedSize == 0;
        }
        @Override
        //删除堆顶元素
        public int popHeap() {
            if(isEmpty()){
                throw new UnsupportedOperationException("堆为空");
            }
           //堆顶元素和最后一个元素进行交换,之后删除原来的堆顶元素
            int oldData = elem[0];
            int tmp = elem[0];
            elem[0] = elem[this.usedSize-1];
            elem[this.usedSize-1] = tmp;
            this.usedSize--;
            又不是大根堆了,从根元素开始向下调整
            AdjustDown(0,this.usedSize);
            return oldData;
        }
    
        @Override
        //返回堆顶元素,不删除数据
        public int getHeapTop() {
            if(isEmpty()){
                throw new UnsupportedOperationException("堆为空");
            }
            return elem[0];
        }
    
        /**
         * 时间复杂度:
         * O(n log 2n)
         * 空间复杂度:o(1)
         * 稳定性:不稳定
         */
        @Override
        public void HeapSort() {
           /* for (int i = (array.length-1-1)/2; i >= 0 ; i--) {
                AdjustDown(i,this.usedSize);
            }*/
            //要交换的最后一个下标
            int end = this.usedSize-1;
            while (end > 0) {
                int tmp = elem[0];
                elem[0] = elem[end];
                elem[end] = tmp;
                AdjustDown(0,end);
                end--;
            }
        }
        //  topK     作业:一亿个数据找出十个最大/最小的数据
        @Override
        public void show() {
            for (int i = 0; i < this.usedSize; i++) {
                System.out.print(elem[i] +" ");
            }
            System.out.println();
        }
    }
    
    
    class Test_Heap{
        public static void main(String[] args) {
            TestHeap testHeap = new TestHeap();
            int[] array = {1,2,3,4,5,6,7,8,9,10};
            testHeap.initHeap(array);
            System.out.print("初始化:   "); testHeap.show();
            testHeap.pushHeap(11);
            System.out.print("将11插入到堆中: ");testHeap.show();
            testHeap.popHeap();
            System.out.print("返回堆顶元素,删除数据元素:   ");  testHeap.show();
            testHeap.HeapSort();
            System.out.print("堆排序:   "); testHeap.show();
            System.out.print("返回堆顶元素:");
            System.out.println(testHeap.getHeapTop());
        }
    }
    
    
    interface IHeap {
        //向下调整
        void AdjustDown(int root,int len);
        //初始化建立大根堆
        public void initHeap(int[] array);
        //向上调整,从孩子节点开始调整
        void AdjustUp(int child);
        // 插入 item 到堆中
        void pushHeap(int item);
        // 返回堆顶元素,删除数据元素
        int popHeap();
        // 返回堆顶元素,不删除数据元素
        int getHeapTop();
        //堆排序
        void HeapSort();
        //打印堆
        void show();
    }

    github:https://github.com/hehaoyuan/Data-Structure/blob/master/%E5%A4%A7%E6%A0%B9%E5%A0%86.java

  • 相关阅读:
    [HDU3247]Resource Archiver
    [POJ2243]考研路茫茫——单词情结
    [POJ2778]DNA Sequence
    [bzoj3670] [Noi2014]动物园
    [bzoj3786] 星系探索
    [bzoj1493] [NOI2007]项链工厂
    postgreSQL的设置自增主键初始值
    postgreSQL绝对值
    GitHub上新建或删除仓库Repository
    Intellij Idea上传本地项目到Git
  • 原文地址:https://www.cnblogs.com/hetaoyuan/p/11279236.html
Copyright © 2020-2023  润新知