Total Submission(s): 740 Accepted Submission(s): 294
Problem Description
Let L denote
the number of 1s in integer D’s
binary representation. Given two integers S1 and S2,
we call D a
WYH number if S1≤L≤S2.
With a given D, we would like to find the next WYH number Y, which is JUST larger than D. In other words, Y is the smallest WYH number among the numbers larger than D. Please write a program to solve this problem.
With a given D, we would like to find the next WYH number Y, which is JUST larger than D. In other words, Y is the smallest WYH number among the numbers larger than D. Please write a program to solve this problem.
Input
The first line of input contains a number T indicating
the number of test cases (T≤300000).
Each test case consists of three integers D, S1, and S2, as described above. It is guaranteed that 0≤D<231 and D is a WYH number.
Each test case consists of three integers D, S1, and S2, as described above. It is guaranteed that 0≤D<231 and D is a WYH number.
Output
For each test case, output a single line consisting of “Case #X: Y”. X is
the test case number starting from 1. Y is
the next WYH number.
Sample Input
3
11 2 4
22 3 3
15 2 5
Sample Output
Case #1: 12
Case #2: 25
Case #3: 17
Source
2015 ACM/ICPC Asia Regional Hefei Online
这题自己没有想到,比赛时是队友做的,后来知道了做法。先把D加1变成m,然后判断m是否满足条件,如果满足就直接输出m,如果不满足,那么有两种情况,第一种是二进制后的1的个数小于s1,那么我们只要从右往左找第一个0,使得其变为1(即加上2^i),如果二进制后的1的个数大于s1,那么我们只要从右往左找第一个1,然后加上(2^i),使其变为0,然后继续下去。
这种方法可行的原因是每次都是使改变最少,所以得到的值一定是成立中最小的。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 0x7fffffff
int main()
{
ll n,m,i,j,T,t1,t2,wei,num1=0,num;
int a[40];
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld%lld",&n,&t1,&t2);
n++;
while(1){
m=n;
wei=0;num=0;
while(m){
a[++wei]=m%2;
if(m%2==1)num++;
m/=2;
}
if(num<t1){
for(i=1;i<=wei;i++){
if(a[i]==0){
j=i;break;
}
}
n+=(1<<(j-1));
}
else if(num>t2){
for(i=1;i<=wei;i++){
if(a[i]==1){
j=i;break;
}
}
n+=(1<<(j-1) );
}
else break;
}
num1++;
printf("Case #%lld: %lld
",num1,n);
}
return 0;
}