• codeforces 86D D. Powerful array


    An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, al + 1..., ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of productsKs·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

    You should calculate the power of t given subarrays.

    Input

    First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

    Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

    Next t lines contain two positive integers lr (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

    Output

    Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

    Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use%I64d).

    Sample test(s)
    input
    3 2
    1 2 1
    1 2
    1 3
    
    output
    3
    6
    
    input
    8 3
    1 1 2 2 1 3 1 1
    2 7
    1 6
    2 7
    
    output
    20
    20
    

    20

    这题也是用莫队算法,类型和前面小Z的袜子基本一样。

    #include <cstdio>
    #include <iostream>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    struct Query
    {
        int id, l, r;
        long long ans;
    };
    
    const int MAXN = 200010;
    const int MAXNUM = 1000010;
    int n, m, sqrtn;
    int c[MAXN], num[MAXNUM];
    Query q[MAXN];
    
    int gcd(int a, int b)
    {
        return b == 0 ? a : gcd(b, a % b);
    }
    
    bool cmplr(const Query &a, const Query &b)
    {
        if (a.l / sqrtn == b.l / sqrtn) return a.r < b.r;
        else return a.l < b.l;
    }
    
    bool cmpid(const Query &a, const Query &b)
    {
        return a.id < b.id;
    }
    
    int main()
    {
        scanf("%d%d", &n, &m);
        sqrtn = (int)sqrt(n);
        memset(num, 0, sizeof(num));
        for (int i = 1; i <= n; i++)
            scanf("%d", &c[i]);
        for (int i = 0; i < m; i++)
        {
            q[i].id = i;
            scanf("%d%d", &q[i].l, &q[i].r);
        }
        sort(q, q + m, cmplr);
        int l = 1, r = 1;
        long long ans = c[1];
        num[c[1]]++;
        for (int i = 0; i < m; i++)
        {
            while (r < q[i].r)
            {
                r++;
                ans -= (long long)num[c[r]] * num[c[r]] * c[r];
                num[c[r]]++;
                ans += (long long)num[c[r]] * num[c[r]] * c[r];
            }
            while (l < q[i].l)
            {
                ans -= (long long)num[c[l]] * num[c[l]] * c[l];
                num[c[l]]--;
                ans += (long long)num[c[l]] * num[c[l]] * c[l];
                l++;
            }
            while (l > q[i].l)
            {
                l--;
                ans -= (long long)num[c[l]] * num[c[l]] * c[l];
                num[c[l]]++;
                ans += (long long)num[c[l]] * num[c[l]] * c[l];
            }
            while (r > q[i].r)
            {
                ans -= (long long)num[c[r]] * num[c[r]] * c[r];
                num[c[r]]--;
                ans += (long long)num[c[r]] * num[c[r]] * c[r];
                r--;
            }
            q[i].ans = ans;
        }
        sort(q, q + m, cmpid);
        for (int i = 0; i < m; i++)
            cout << q[i].ans << "
    ";
        return 0;
    }
    	 	 


  • 相关阅读:
    Python语言简介以及特点
    计算机组成原理简述
    Python中的dict字典的用法
    Python3中IO文件操作的常见用法
    Python中的装饰器的使用及固定模式
    Python中的解决中文字符编码的问题
    Python中常见字符串去除空格的方法总结
    Python中print函数中中逗号和加号的区别
    当引用了Properties.Settings后,如果执行的时候,出现"配置系统无法初始化" 或者 某某节点不正确
    修改IP的方法(C#)
  • 原文地址:https://www.cnblogs.com/herumw/p/9464574.html
Copyright © 2020-2023  润新知