• hdu5627 Clarke and MST (并查集)


    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 311    Accepted Submission(s): 173


    Problem Description
    Clarke is a patient with multiple personality disorder. One day he turned into a learner of graph theory. 
    He learned some algorithms of minimum spanning tree. Then he had a good idea, he wanted to find the maximum spanning tree with bit operation AND. 
    A spanning tree is composed by n1 edges. Each two points of n points can reach each other. The size of a spanning tree is generated by bit operation AND with values of n1 edges. 
    Now he wants to figure out the maximum spanning tree.
     

    Input
    The first line contains an integer T(1T5), the number of test cases. 
    For each test case, the first line contains two integers n,m(2n300000,1m300000), denoting the number of points and the number of edge respectively. 
    Then m lines followed, each line contains three integers x,y,w(1x,yn,0w109), denoting an edge between x,y with value w
    The number of test case with n,m>100000 will not exceed 1. 
     

    Output
    For each test case, print a line contained an integer represented the answer. If there is no any spanning tree, print 0.
     

    Sample Input
    1 4 5 1 2 5 1 3 3 1 4 2 2 3 1 3 4 7
     

    Sample Output
    1
     
    题意:给你n个点m条边以及m条边的权值,让你构造一棵生成树,使得生成树的权值and和最大。
    思路:我们可以贪心地枚举二进制中的每一位,从30到0,然后判断有该位的值为1的所有权值中能不能形成一棵生成树,如果有,那么这些权值的边为可选边,看能不能组成下一位。

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define inf 99999999
    #define pi acos(-1.0)
    #define maxn 300050
    struct node{
        int x,y,w;
    }e[maxn];
    int ok[maxn],pre[maxn],ran[maxn];
    void makeset(int x){
        pre[x]=x;
        ran[x]=0;
    }
    int findset(int x){
        int i,j=x,r=x;
        while(r!=pre[r])r=pre[r];
        while(j!=pre[j]){
            i=pre[j];
            pre[j]=r;
            j=i;
        }
        return r;
    
    }
    
    int main()
    {
        int n,m,i,j,T,t;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            for(i=1;i<=m;i++){
                scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
            }
            for(i=1;i<=m;i++)ok[i]=1;
            int sum=0;
            for(t=30;t>=0;t--){
                for(i=1;i<=n;i++){
                    makeset(i);
                }
                int ans=n;
                for(i=1;i<=m;i++){
                    if(ok[i] && (e[i].w&(1<<t) ) ){
                        int x=findset(e[i].x);
                        int y=findset(e[i].y);
                        if(x==y)continue;
                        ans--;
                        if(ran[x]>ran[y]){
                            pre[y]=x;
                        }
                        else{
                            pre[x]=y;
                            if(ran[x]==ran[y])ran[y]++;
                        }
    
    
                    }
    
    
                }
                if(ans==1){
                    sum|=(1<<t);
                    for(i=1;i<=m;i++){
                        if(ok[i] && (e[i].w&(1<<t) )){
                            ok[i]=1;
                        }
                        else ok[i]=0;
                    }
    
    
                }
    
    
    
            }
            printf("%d
    ",sum);
    
    
    
    
        }
        return 0;
    
    
    
    
    }


  • 相关阅读:
    JVM全面分析之程序计时器
    JVM全面分析之类加载系统
    问题
    -----------------------算法学习篇:斐波拉契数列------------------------
    -----------------------------------A Tour of C++ Chapter8-------------------------------------------
    -----------------Clean Code《代码整洁之道》--------------------
    -----------------------------------A Tour of C++-------------------------------------------
    -----------------Clean Code《代码整洁之道》--------------------
    http响应状态码大全
    DOM之通俗易懂讲解
  • 原文地址:https://www.cnblogs.com/herumw/p/9464554.html
Copyright © 2020-2023  润新知