• hdu2141 Can you find it? (二分)


    Problem Description
    Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X.
     

    Input
    There are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent the sequences B, in the forth line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers.
     

    Output
    For each case, firstly you have to print the case number as the form "Case d:", then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print "YES", otherwise print "NO".
     

    Sample Input
    3 3 3 1 2 3 1 2 3 1 2 3 3 1 4 10
     

    Sample Output
    Case 1: NO YES NO
    题意:给你L个A,N个B,M个C以及S个X,问对于每一个x,能否从A,B,C中各找出一个值,使得A+B+C=X.
    思路:这是一道二分题,可以把A+B+C=X看做A+B=X-C,那么我们先把A+B并成一个集合Z,然后枚举X-C的值,二分寻找Z中是否有这个值。本来挺简单的二分,自己做的时候一直考虑二分C数组,时间复杂度怎么算都超了= .= 。
    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    typedef long double ldb;
    #define inf 99999999
    #define pi acos(-1.0)
    #define eps 1e-15
    #define maxn 506
    ll a[maxn],b[maxn],c[maxn],d[2*maxn],e[maxn];
    ll bing[maxn*maxn];
    
    int main()
    {
        int n,m,i,j,cas=0,t,p;
        while(scanf("%d%d%d",&n,&m,&t)!=EOF)
        {
            for(i=1;i<=n;i++){
                scanf("%lld",&a[i]);
            }
            for(i=1;i<=m;i++){
                scanf("%lld",&b[i]);
            }
            int tot=0;
            for(i=1;i<=n;i++){
                for(j=1;j<=m;j++){
                    tot++;
                    bing[tot]=a[i]+b[j];
                }
            }
            sort(bing+1,bing+1+tot);
            for(i=1;i<=t;i++){
                scanf("%lld",&c[i]);
            }
            scanf("%d",&p);
            for(i=1;i<=p;i++){
                scanf("%lld",&e[i]);
            }
            cas++;
            printf("Case %d:
    ",cas);
            for(i=1;i<=p;i++){
                int flag=0;
                for(j=1;j<=t;j++){
                    int wei=lower_bound(bing+1,bing+1+tot,e[i]-c[j])-bing;
                    if(bing[wei]==e[i]-c[j]){
                        flag=1;break;
                    }
                }
                if(flag)printf("YES
    ");
                else printf("NO
    ");
            }
        }
        return 0;
    }

  • 相关阅读:
    Entity Framework 学习中级篇2—存储过程(上)(转)
    PB TreeView 属性,事件详解(转)
    java面试宝典
    Entity Framework 学习初级篇5ObjectQuery查询及方法(转)
    关于安卓中国移动定制机GPS定位问题解决办法
    Asp.net中优化页面小技巧—让搜索引擎更容易找到你的页面!
    服务器SQl2000和SQl2005版本不同带来一系列问题解决方案
    Asp.net中小技巧—服务器端Web控件与客户端Html控件交互
    Asp.net中利用ExecuteNonQuery()执行存储过程返回1解决方案
    Asp.net中DropDownlist中无法触发后台事件解决方案
  • 原文地址:https://www.cnblogs.com/herumw/p/9464549.html
Copyright © 2020-2023  润新知