As Famil Door’s birthday is coming, some of his friends (like Gabi) decided to buy a present for him. His friends are going to buy a string consisted of round brackets since Famil Door loves string of brackets of length n more than any other strings!
The sequence of round brackets is called valid if and only if:
- the total number of opening brackets is equal to the total number of closing brackets;
- for any prefix of the sequence, the number of opening brackets is greater or equal than the number of closing brackets.
Gabi bought a string s of length m (m ≤ n) and want to complete it to obtain a valid sequence of brackets of length n. He is going to pick some strings p and q consisting of round brackets and merge them in a string p + s + q, that is add the string p at the beginning of the string s and string q at the end of the string s.
Now he wonders, how many pairs of strings p and q exists, such that the string p + s + q is a valid sequence of round brackets. As this number may be pretty large, he wants to calculate it modulo 109 + 7.
First line contains n and m (1 ≤ m ≤ n ≤ 100 000, n - m ≤ 2000) — the desired length of the string and the length of the string bought by Gabi, respectively.
The second line contains string s of length m consisting of characters '(' and ')' only.
Print the number of pairs of string p and q such that p + s + q is a valid sequence of round brackets modulo 109 + 7.
4 1 (
4
4 4 (())
1
4 3 (((
0
题意:给你一个长度为n的括号匹配串(不一定恰好匹配),让你在这个串的前面和后面加上一些括号匹配串,使得这个括号串平衡(平衡的含义是对于任意位置的括号前缀和大于等于0,且最后的前缀和为0)。
思路:比较容易想到的思路是枚举这个字符串前面p字符串的长度,那么后面q字符串的长度就知道了。那么p字符串要满足什么条件呢,因为要使得任意位置的前缀和大于等于0,所以我们可以使得p字符串的前缀和大于等于字符串s的最小前缀和minx,那么p+s就符合前缀和大于等于0,然后q的方案数也能确定了。我们用dp[i][j]表示i个括号平衡度为j的方案数,那么可以先预处理出来dp的值。然后我们算出s字符串的最小前缀和minx,最后我们只要枚举p的长度和平衡度c,那么sum+=dp[p][c]*dp[n-m-p][now+c],(now是整个s字符串的平衡度,考虑q的方案数时,我们要考虑对称性)。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define eps 1e-15
#define maxn 100050
#define MOD 1000000007
char s[maxn];
ll dp[2050][2060];
int main()
{
int n,m,i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
scanf("%s",s+1);
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(i=1;i<=n-m;i++){
for(j=0;j<=i;j++){
if(j>0){
dp[i][j]=(dp[i][j]+dp[i-1][j-1])%MOD;
}
dp[i][j]=(dp[i][j]+dp[i-1][j+1])%MOD;
if(dp[i][j]>=MOD)dp[i][j]-=MOD;
}
}
int minx=inf;
int now=0;
for(i=1;i<=m;i++){
if(s[i]=='(')now++;
else now--;
minx=min(minx,now);
}
ll sum=0;
for(i=0;i<=n-m;i++){
for(j=0;j<=i;j++){
if(j>=-minx && j+now<=n-m-i){
sum=(sum+dp[i][j]*dp[n-m-i][j+now ])%MOD;
}
}
}
printf("%I64d
",sum);
}
return 0;
}