• 案例1


    # -*- coding: utf-8 -*-
    """
    Created on Mon Feb  3 17:17:42 2020
    
    @author: Administrator
    """
    
    
    '''
    01 读取数据 ;;;
    '''
    
    df1 = pd.read_excel("C:\Users\Administrator\Desktop\上海餐饮数据.xlsx")
    df1_length = len(df1)
    df1_columns = df1.columns.tolist()
    print('数据量为%i条' % len(df1))
    print(df1.head())
    
    '''
    02 清洗数据 ;;;
    '''
    # 筛选数据,清除空值、为0的数据
    data1 = df1[['类别','口味','环境','服务','人均消费']]
    data1.dropna(inplace = True)
    data1 = data1[(data1['口味']>0)&(data1['人均消费']>0)]
    
    # 计算性价比指数
    data1['性价比'] = (data1['口味'] + data1['环境'] + data1['服务']) / data1['人均消费']
    
    # 查看异常值
    fig,axes = plt.subplots(1,3,figsize = (10,4))
    data1.boxplot(column=['口味'],ax = axes[0])
    data1.boxplot(column=['人均消费'],ax = axes[1])
    data1.boxplot(column=['性价比'],ax = axes[2])
    
    # 创建函数1→ 删除异常值
    def f1(data,col):
        q1 = data[col].quantile(q = 0.25)
        q3 = data[col].quantile(q = 0.75) 
        iqr = q3-q1
        t1 = q1 - 3 * iqr
        t2 = q3 + 3 * iqr
        return data[(data[col] > t1)&(data[col]<t2)][['类别',col]]
    
    # 数据异常值处理
    data_kw = f1(data1,'口味')
    data_rj = f1(data1,'人均消费')
    data_xjb = f1(data1,'性价比')
    
    '''
    03 数据处理
    '''
    
    # 创建函数2 → 标准化指标并排序
    def f2(data,col):
        col_name = col + '_norm'
        data_gp = data.groupby('类别').mean()
        data_gp[col_name] = (data_gp[col] - data_gp[col].min())/(data_gp[col].max()-data_gp[col].min())
        data_gp.sort_values(by = col_name, inplace = True, ascending=False)
        return data_gp
    
    # 指标标准化得分
    data_kw_score = f2(data_kw,'口味')
    data_rj_score = f2(data_rj,'人均消费')
    data_xjb_score = f2(data_xjb,'性价比')
    
    
    # 合并数据
    data_final_q1 = pd.merge(data_kw_score,data_rj_score,left_index=True,right_index=True)    # 合并口味、人均消费指标得分
    data_final_q1 = pd.merge(data_final_q1,data_xjb_score,left_index=True,right_index=True)       # 合并性价比指标得分
    
    
    data_final_q1.head()
    
    
    '''
    04 绘制图形
    '''
    # 制作散点图、柱状图
    # x轴为“人均消费”,y轴为“性价比得分”,点的大小为“口味得分”
    from bokeh.models import HoverTool
    from bokeh.palettes import brewer
    from bokeh.models.annotations import BoxAnnotation
    from bokeh.layouts import gridplot
    # 导入模块
    
     # 添加size字段
    data_final_q1['size'] = data_final_q1['口味_norm'] * 40 
    data_final_q1.index.name = 'type'
    data_final_q1.columns = ['kw','kw_norm','price','price_norm','xjb','xjb_norm','size']
    # 将中文改为英文
    # 添加颜色参数
    
    # 创建ColumnDataSource数据
    source = ColumnDataSource(data_final_q1)
    
    
    # 设置标签显示内容
    hover = HoverTool(tooltips=[("餐饮类型", "@type"),
                                ("人均消费", "@price"),
                                ("性价比得分", "@xjb_norm"),
                                ("口味得分", "@kw_norm")
                               ]) 
        
    # 构建绘图空间  散点图    
    result = figure(plot_width=800, plot_height=250,
                    title="餐饮类型得分情况" ,
                    x_axis_label = '人均消费', y_axis_label = '性价比得分', 
                    tools=[hover,'box_select,reset,xwheel_zoom,pan,crosshair']) 
    
    
    result.circle(x = 'price',y = 'xjb_norm',source = source,
             line_color = 'black',line_dash = [6,4],fill_alpha = 0.6,
            size = 'size')
    
    # 设置人均消费中间价位区间
    price_mid = BoxAnnotation(left=40,right=80, fill_alpha=0.1, fill_color='navy')   
    result.add_layout(price_mid)
    
    result.title.text_font_style = "bold"
    result.ygrid.grid_line_dash = [6, 4]
    result.xgrid.grid_line_dash = [6, 4]
    
    
    # 绘制柱状图
    data_type = data_final_q1.index.tolist()# 提取横坐标
    
    kw = figure(plot_width=800, plot_height=250, title='口味得分',x_range=data_type,
               tools=[hover,'box_select,reset,xwheel_zoom,pan,crosshair'])
    kw.vbar(x='type', top='kw_norm', source=source,width=0.9, alpha = 0.8,color = 'red')   
    kw.ygrid.grid_line_dash = [6, 4]
    kw.xgrid.grid_line_dash = [6, 4]
    # 柱状图1
    
    price = figure(plot_width=800, plot_height=250, title='人均消费得分',x_range=kw.x_range,
                  tools=[hover,'box_select,reset,xwheel_zoom,pan,crosshair'])
    price.vbar(x='type', top='price_norm', source=source,width=0.9, alpha = 0.8,color = 'green') 
    price.ygrid.grid_line_dash = [6, 4]
    price.xgrid.grid_line_dash = [6, 4]
    # 柱状图2
        
    p = gridplot([[result],[kw], [price]])
    # 组合图表
    show(p)
    

      

  • 相关阅读:
    每日英语:Universities in Singapore strengthen cooperation with China
    每日英语:The Exercise Equivalent of a Cheeseburger?
    每日英语:Eating Safely in China, on a Budget
    每日英语:What Makes A RiskTaker
    OAuth2 vs JWT,到底怎么选?
    Docker 为什么输给了Kubernetes?Docker 员工自述!
    90 岁程序员,他的压缩算法改变了世界!
    数据库设计的 10 个最佳实践!
    代码写的垃圾被嫌弃?这 3 个插件你值得拥有!
    ShardingJdbc 实现读写分离 + 分库分表,写得太好了!
  • 原文地址:https://www.cnblogs.com/hero799/p/12256529.html
Copyright © 2020-2023  润新知