• 大服务器配置tensorflow环境


    大服务器配置tensorflow环境

    创建环境

    (base) bim@bim-PowerEdge-R730:~$ conda create -n mask_rcnn_tf2 python==3.7
    Solving environment: done
    
    ## Package Plan ##
    
      environment location: /home/bim/anaconda3/envs/mask_rcnn_tf2
    
      added / updated specs: 
        - python==3.7
    
    
    The following packages will be downloaded:
    
        package                    |            build
        ---------------------------|-----------------
        readline-7.0               |       h7b6447c_5         392 KB  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        openssl-1.0.2u             |       h7b6447c_0         3.1 MB  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        libedit-3.1.20210910       |       h7f8727e_0         191 KB  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        python-3.7.0               |       h6e4f718_3        30.6 MB  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        sqlite-3.33.0              |       h62c20be_0         2.0 MB  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        ------------------------------------------------------------
                                               Total:        36.3 MB
    
    The following NEW packages will be INSTALLED:
    
        _libgcc_mutex:   0.1-main                 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        ca-certificates: 2022.4.26-h06a4308_0     http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        certifi:         2021.10.8-py37h06a4308_2 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        libedit:         3.1.20210910-h7f8727e_0  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        libffi:          3.2.1-1                  http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
        libgcc-ng:       9.1.0-hdf63c60_0         http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        libstdcxx-ng:    9.1.0-hdf63c60_0         http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        ncurses:         6.3-h7f8727e_2           http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        openssl:         1.0.2u-h7b6447c_0        http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        pip:             21.2.2-py37h06a4308_0    http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        python:          3.7.0-h6e4f718_3         http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        readline:        7.0-h7b6447c_5           http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        setuptools:      61.2.0-py37h06a4308_0    http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        sqlite:          3.33.0-h62c20be_0        http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        tk:              8.6.11-h1ccaba5_0        http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        wheel:           0.37.1-pyhd3eb1b0_0      http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        xz:              5.2.5-h7f8727e_1         http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        zlib:            1.2.11-0                 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
    
    Proceed ([y]/n)? y
    
    
    Downloading and Extracting Packages
    readline-7.0         | 392 KB    | ###################################################################################################################################################################################################### | 100% 
    openssl-1.0.2u       | 3.1 MB    | ###################################################################################################################################################################################################### | 100% 
    libedit-3.1.20210910 | 191 KB    | ###################################################################################################################################################################################################### | 100% 
    python-3.7.0         | 30.6 MB   | ###################################################################################################################################################################################################### | 100% 
    sqlite-3.33.0        | 2.0 MB    | ###################################################################################################################################################################################################### | 100% 
    Preparing transaction: done
    Verifying transaction: done
    Executing transaction: done
    #
    # To activate this environment, use
    #
    #     $ conda activate mask_rcnn_tf2
    #
    # To deactivate an active environment, use
    #
    #     $ conda deactivate
    
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ uname -a
    Linux bim-PowerEdge-R730 5.13.0-30-generic #33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 

    激活环境

    conda activate mask_rcnn_tf2

    安装tensorflow-gpu

    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ 
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ 
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ 
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ pip install tensorflow-gpu==2.3.0
    Collecting tensorflow-gpu==2.3.0
      Downloading tensorflow_gpu-2.3.0-cp37-cp37m-manylinux2010_x86_64.whl (320.4 MB)
         |████████████████████████████████| 320.4 MB 57 kB/s 
    Collecting h5py<2.11.0,>=2.10.0
      Using cached h5py-2.10.0-cp37-cp37m-manylinux1_x86_64.whl (2.9 MB)
    Collecting absl-py>=0.7.0
      Using cached absl_py-1.0.0-py3-none-any.whl (126 kB)
    Collecting tensorflow-estimator<2.4.0,>=2.3.0
      Downloading tensorflow_estimator-2.3.0-py2.py3-none-any.whl (459 kB)
         |████████████████████████████████| 459 kB 4.7 MB/s 
    Collecting google-pasta>=0.1.8
      Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)
    Collecting opt-einsum>=2.3.2
      Using cached opt_einsum-3.3.0-py3-none-any.whl (65 kB)
    Collecting tensorboard<3,>=2.3.0
      Using cached tensorboard-2.9.0-py3-none-any.whl (5.8 MB)
    Collecting scipy==1.4.1
      Downloading scipy-1.4.1-cp37-cp37m-manylinux1_x86_64.whl (26.1 MB)
         |████████████████████████████████| 26.1 MB 4.1 MB/s 
    Collecting numpy<1.19.0,>=1.16.0
      Downloading numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl (20.1 MB)
         |████████████████████████████████| 20.1 MB 6.4 MB/s 
    Collecting six>=1.12.0
      Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)
    Collecting keras-preprocessing<1.2,>=1.1.1
      Using cached Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)
    Requirement already satisfied: wheel>=0.26 in ./anaconda3/envs/mask_rcnn_tf2/lib/python3.7/site-packages (from tensorflow-gpu==2.3.0) (0.37.1)
    Collecting wrapt>=1.11.1
      Using cached wrapt-1.14.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75 kB)
    Collecting termcolor>=1.1.0
      Using cached termcolor-1.1.0-py3-none-any.whl
    Collecting gast==0.3.3
      Using cached gast-0.3.3-py2.py3-none-any.whl (9.7 kB)
    Collecting protobuf>=3.9.2
      Using cached protobuf-3.20.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)
    Collecting grpcio>=1.8.6
      Using cached grpcio-1.46.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB)
    Collecting astunparse==1.6.3
      Using cached astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
    Collecting werkzeug>=1.0.1
      Using cached Werkzeug-2.1.2-py3-none-any.whl (224 kB)
    Collecting google-auth<3,>=1.6.3
      Using cached google_auth-2.6.6-py2.py3-none-any.whl (156 kB)
    Collecting tensorboard-plugin-wit>=1.6.0
      Using cached tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB)
    Requirement already satisfied: setuptools>=41.0.0 in ./anaconda3/envs/mask_rcnn_tf2/lib/python3.7/site-packages (from tensorboard<3,>=2.3.0->tensorflow-gpu==2.3.0) (61.2.0)
    Collecting tensorboard-data-server<0.7.0,>=0.6.0
      Using cached tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB)
    Collecting requests<3,>=2.21.0
      Using cached requests-2.27.1-py2.py3-none-any.whl (63 kB)
    Collecting google-auth-oauthlib<0.5,>=0.4.1
      Using cached google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB)
    Collecting markdown>=2.6.8
      Using cached Markdown-3.3.7-py3-none-any.whl (97 kB)
    Collecting rsa<5,>=3.1.4
      Using cached rsa-4.8-py3-none-any.whl (39 kB)
    Collecting cachetools<6.0,>=2.0.0
      Using cached cachetools-5.1.0-py3-none-any.whl (9.2 kB)
    Collecting pyasn1-modules>=0.2.1
      Using cached pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB)
    Collecting requests-oauthlib>=0.7.0
      Using cached requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)
    Collecting importlib-metadata>=4.4
      Using cached importlib_metadata-4.11.3-py3-none-any.whl (18 kB)
    Collecting typing-extensions>=3.6.4
      Using cached typing_extensions-4.2.0-py3-none-any.whl (24 kB)
    Collecting zipp>=0.5
      Using cached zipp-3.8.0-py3-none-any.whl (5.4 kB)
    Collecting pyasn1<0.5.0,>=0.4.6
      Using cached pyasn1-0.4.8-py2.py3-none-any.whl (77 kB)
    Collecting charset-normalizer~=2.0.0
      Using cached charset_normalizer-2.0.12-py3-none-any.whl (39 kB)
    Collecting urllib3<1.27,>=1.21.1
      Using cached urllib3-1.26.9-py2.py3-none-any.whl (138 kB)
    Collecting idna<4,>=2.5
      Using cached idna-3.3-py3-none-any.whl (61 kB)
    Requirement already satisfied: certifi>=2017.4.17 in ./anaconda3/envs/mask_rcnn_tf2/lib/python3.7/site-packages (from requests<3,>=2.21.0->tensorboard<3,>=2.3.0->tensorflow-gpu==2.3.0) (2021.10.8)
    Collecting oauthlib>=3.0.0
      Using cached oauthlib-3.2.0-py3-none-any.whl (151 kB)
    Installing collected packages: urllib3, pyasn1, idna, charset-normalizer, zipp, typing-extensions, six, rsa, requests, pyasn1-modules, oauthlib, cachetools, requests-oauthlib, importlib-metadata, google-auth, werkzeug, tensorboard-plugin-wit, tensorboard-data-server, protobuf, numpy, markdown, grpcio, google-auth-oauthlib, absl-py, wrapt, termcolor, tensorflow-estimator, tensorboard, scipy, opt-einsum, keras-preprocessing, h5py, google-pasta, gast, astunparse, tensorflow-gpu
    Successfully installed absl-py-1.0.0 astunparse-1.6.3 cachetools-5.1.0 charset-normalizer-2.0.12 gast-0.3.3 google-auth-2.6.6 google-auth-oauthlib-0.4.6 google-pasta-0.2.0 grpcio-1.46.1 h5py-2.10.0 idna-3.3 importlib-metadata-4.11.3 keras-preprocessing-1.1.2 markdown-3.3.7 numpy-1.18.5 oauthlib-3.2.0 opt-einsum-3.3.0 protobuf-3.20.1 pyasn1-0.4.8 pyasn1-modules-0.2.8 requests-2.27.1 requests-oauthlib-1.3.1 rsa-4.8 scipy-1.4.1 six-1.16.0 tensorboard-2.9.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 tensorflow-estimator-2.3.0 tensorflow-gpu-2.3.0 termcolor-1.1.0 typing-extensions-4.2.0 urllib3-1.26.9 werkzeug-2.1.2 wrapt-1.14.1 zipp-3.8.0
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ 
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ 
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ 
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ 
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ 

     查看gpu是否可用

    print(tf.test.is_gpu_available())
    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~/tensorflow_project$ python
    Python 3.7.0 (default, Oct  9 2018, 10:31:47) 
    [GCC 7.3.0] :: Anaconda, Inc. on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> 
    >>> 
    >>> 
    >>> 
    >>> import tensorflow as tf
    2022-05-17 20:51:25.689564: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
    >>> 
    >>> 
    >>> 
    >>> 
    >>> 
    >>> tf.__version__
    '2.3.0'
    >>> 
    >>> 
    >>> 
    >>> 
    >>> 
    >>> 
    >>> print(tf.test.is_gpu_available())
    WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use `tf.config.list_physical_devices('GPU')` instead.
    2022-05-17 20:52:43.931591: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations:  AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    2022-05-17 20:52:43.963271: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2399985000 Hz
    2022-05-17 20:52:43.964706: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x562dc2276bb0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
    2022-05-17 20:52:43.964727: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
    2022-05-17 20:52:43.967131: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1
    2022-05-17 20:52:45.327224: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x562dc13c0950 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
    2022-05-17 20:52:45.327271: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Tesla P100-PCIE-12GB, Compute Capability 6.0
    2022-05-17 20:52:45.327280: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (1): Tesla P100-PCIE-12GB, Compute Capability 6.0
    2022-05-17 20:52:45.328289: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: 
    pciBusID: 0000:04:00.0 name: Tesla P100-PCIE-12GB computeCapability: 6.0
    coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 11.91GiB deviceMemoryBand 511.41GiB/s
    2022-05-17 20:52:45.329022: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties: 
    pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-12GB computeCapability: 6.0
    coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 11.91GiB deviceMemoryBand 511.41GiB/s
    2022-05-17 20:52:45.329055: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
    2022-05-17 20:52:45.329317: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcublas.so.10'; dlerror: libcublas.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64
    2022-05-17 20:52:45.354650: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10
    2022-05-17 20:52:45.362046: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10
    2022-05-17 20:52:45.362163: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64
    2022-05-17 20:52:45.362260: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcusparse.so.10'; dlerror: libcusparse.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64
    2022-05-17 20:52:45.362309: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
    2022-05-17 20:52:45.362319: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1753] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
    Skipping registering GPU devices...
    2022-05-17 20:52:45.362340: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
    2022-05-17 20:52:45.362350: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263]      0 1 
    2022-05-17 20:52:45.362358: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0:   N N 
    2022-05-17 20:52:45.362365: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 1:   N N 
    False
    >>> 
    >>> 
    >>> 
    View Code

     显示gpu不可用,提示:

    Could not load dynamic library 'libcublas.so.10'; dlerror: libcublas.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64:/usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64
    Could not load dynamic library 'libcufft.so.10'; dlerror: libcufft.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64:/usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64
    Could not load dynamic library 'libcurand.so.10'; dlerror: libcurand.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64:/usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64
    Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64:/usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64
    Could not load dynamic library 'libcusparse.so.10'; dlerror: libcusparse.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64:/usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64
    Could not load dynamic library 'libcudnn.so.7'; dlerror: libcudnn.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.4/lib64:/usr/local/cuda-11.4/lib64::/usr/local/cuda/lib64

    libcublas.so.10  libcufft.so.10   libcurand.so.10    libcusolver.so.10    libcusparse.so.10    libcudnn.so.7  文件都无法找到

    使用root账户,进入

    cd /usr/local/cuda-11.4/lib64

    运行以下命令

    ln -sf libcublas.so.11.5.2.43  libcublas.so.10
    ln -sf libcufft.so.10.5.0.43  libcufft.so.10
    ln -sf libcurand.so.10.2.5.43  libcurand.so.10
    ln -sf libcusolver.so.11.2.0.43  libcusolver.so.10
    ln -sf libcusparse.so.11.6.0.43  libcusparse.so.10
    ln -sf libcudnn.so.8  libcudnn.so.7

    然后再运行

    (mask_rcnn_tf2) bim@bim-PowerEdge-R730:~$ python
    Python 3.7.0 (default, Oct  9 2018, 10:31:47) 
    [GCC 7.3.0] :: Anaconda, Inc. on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> 
    >>> 
    >>> 
    >>> import tensorflow as tf
    2022-05-17 21:56:44.976375: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
    
    >>> 
    >>> 
    >>> 
    >>> 
    >>> 
    >>> print(tf.test.is_gpu_available())
    WARNING:tensorflow:From <stdin>:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use `tf.config.list_physical_devices('GPU')` instead.
    2022-05-17 21:56:49.260798: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations:  AVX2 FMA
    To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
    2022-05-17 21:56:49.291322: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104] CPU Frequency: 2399975000 Hz
    2022-05-17 21:56:49.292677: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x561584bd1c90 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
    2022-05-17 21:56:49.292698: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
    2022-05-17 21:56:49.294936: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1
    2022-05-17 21:56:49.698527: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x5615825c83f0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
    2022-05-17 21:56:49.698580: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Tesla P100-PCIE-12GB, Compute Capability 6.0
    2022-05-17 21:56:49.698596: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (1): Tesla P100-PCIE-12GB, Compute Capability 6.0
    2022-05-17 21:56:49.700391: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: 
    pciBusID: 0000:04:00.0 name: Tesla P100-PCIE-12GB computeCapability: 6.0
    coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 11.91GiB deviceMemoryBand 511.41GiB/s
    2022-05-17 21:56:49.701804: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties: 
    pciBusID: 0000:82:00.0 name: Tesla P100-PCIE-12GB computeCapability: 6.0
    coreClock: 1.3285GHz coreCount: 56 deviceMemorySize: 11.91GiB deviceMemoryBand 511.41GiB/s
    2022-05-17 21:56:49.701858: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
    2022-05-17 21:56:49.709602: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
    2022-05-17 21:56:49.712853: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10
    2022-05-17 21:56:49.713111: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10
    2022-05-17 21:56:49.713657: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10
    2022-05-17 21:56:49.714620: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10
    2022-05-17 21:56:49.714756: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
    2022-05-17 21:56:49.717598: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1858] Adding visible gpu devices: 0, 1
    2022-05-17 21:56:49.717635: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
    2022-05-17 21:56:50.512900: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1257] Device interconnect StreamExecutor with strength 1 edge matrix:
    2022-05-17 21:56:50.512958: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1263]      0 1 
    2022-05-17 21:56:50.512968: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 0:   N N 
    2022-05-17 21:56:50.512973: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1276] 1:   N N 
    2022-05-17 21:56:50.515585: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/device:GPU:0 with 11112 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-12GB, pci bus id: 0000:04:00.0, compute capability: 6.0)
    2022-05-17 21:56:50.516767: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1402] Created TensorFlow device (/device:GPU:1 with 11112 MB memory) -> physical GPU (device: 1, name: Tesla P100-PCIE-12GB, pci bus id: 0000:82:00.0, compute capability: 6.0)
    True
    >>> 
    >>> 
    >>> 

    显示两块显卡都在

    ######################

  • 相关阅读:
    python
    HTTP和HTTPS协议,详解
    常用加密算法之非对称加密算法
    Docker容器数据卷-Volume详解
    使用nsenter进入docker容器后端报错 mesg: ttyname failed: No such file or directory
    Docker 查看容器 IP 地址
    Docker容器数据卷volumes-from
    Docker 进入容器的4种方法
    Jmeter之Bean shell使用(二)
    Jmeter之Bean shell使用(一)
  • 原文地址:https://www.cnblogs.com/herd/p/16282297.html
Copyright © 2020-2023  润新知