• 大服务器bimPowerEdgeR730 配置PaddlePaddle环境


    大服务器bim-PowerEdge-R730,显卡型号:

    Tesla P100-PCIE
    (base) bim@bim-PowerEdge-R730:~$ conda create -n wind_paddle python==3.7
    Collecting package metadata (current_repodata.json): done
    Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
    Collecting package metadata (repodata.json): done
    Solving environment: done
    
    
    ==> WARNING: A newer version of conda exists. <==
      current version: 4.11.0
      latest version: 4.12.0
    
    Please update conda by running
    
        $ conda update -n base -c defaults conda
    
    
    
    ## Package Plan ##
    
      environment location: /home/bim/miniconda3/envs/wind_paddle
    
      added / updated specs:
        - python==3.7
    
    
    The following packages will be downloaded:
    
        package                    |            build
        ---------------------------|-----------------
        libffi-3.2.1               |    he1b5a44_1007          47 KB  conda-forge
        libgcc-ng-11.2.0           |      h1d223b6_14         906 KB  conda-forge
        libgomp-11.2.0             |      h1d223b6_14         429 KB  conda-forge
        libstdcxx-ng-11.2.0        |      he4da1e4_14         4.2 MB  conda-forge
        openssl-1.0.2u             |       h516909a_0         3.2 MB  conda-forge
        pip-22.0.4                 |     pyhd8ed1ab_0         1.5 MB  conda-forge
        python-3.7.0               |    hd21baee_1006        31.5 MB  conda-forge
        python_abi-3.7             |          2_cp37m           4 KB  conda-forge
        readline-7.0               |    hf8c457e_1001         391 KB  conda-forge
        setuptools-60.10.0         |   py37h89c1867_0         1.2 MB  conda-forge
        sqlite-3.28.0              |       h8b20d00_0         1.9 MB  conda-forge
        ------------------------------------------------------------
                                               Total:        45.3 MB
    
    The following NEW packages will be INSTALLED:
    
      _libgcc_mutex      conda-forge/linux-64::_libgcc_mutex-0.1-conda_forge
      _openmp_mutex      conda-forge/linux-64::_openmp_mutex-4.5-1_gnu
      bzip2              conda-forge/linux-64::bzip2-1.0.8-h7f98852_4
      ca-certificates    conda-forge/linux-64::ca-certificates-2021.10.8-ha878542_0
      libffi             conda-forge/linux-64::libffi-3.2.1-he1b5a44_1007
      libgcc-ng          conda-forge/linux-64::libgcc-ng-11.2.0-h1d223b6_14
      libgomp            conda-forge/linux-64::libgomp-11.2.0-h1d223b6_14
      libstdcxx-ng       conda-forge/linux-64::libstdcxx-ng-11.2.0-he4da1e4_14
      libzlib            conda-forge/linux-64::libzlib-1.2.11-h36c2ea0_1013
      ncurses            conda-forge/linux-64::ncurses-6.3-h9c3ff4c_0
      openssl            conda-forge/linux-64::openssl-1.0.2u-h516909a_0
      pip                conda-forge/noarch::pip-22.0.4-pyhd8ed1ab_0
      python             conda-forge/linux-64::python-3.7.0-hd21baee_1006
      python_abi         conda-forge/linux-64::python_abi-3.7-2_cp37m
      readline           conda-forge/linux-64::readline-7.0-hf8c457e_1001
      setuptools         conda-forge/linux-64::setuptools-60.10.0-py37h89c1867_0
      sqlite             conda-forge/linux-64::sqlite-3.28.0-h8b20d00_0
      tk                 conda-forge/linux-64::tk-8.6.12-h27826a3_0
      wheel              conda-forge/noarch::wheel-0.37.1-pyhd8ed1ab_0
      xz                 conda-forge/linux-64::xz-5.2.5-h516909a_1
      zlib               conda-forge/linux-64::zlib-1.2.11-h36c2ea0_1013
    
    
    Proceed ([y]/n)? y
    
    
    Downloading and Extracting Packages
    python-3.7.0         | 31.5 MB   | ############################################################################ | 100% 
    libgcc-ng-11.2.0     | 906 KB    | ############################################################################ | 100% 
    sqlite-3.28.0        | 1.9 MB    | ############################################################################ | 100% 
    libgomp-11.2.0       | 429 KB    | ############################################################################ | 100% 
    setuptools-60.10.0   | 1.2 MB    | ############################################################################ | 100% 
    pip-22.0.4           | 1.5 MB    | ############################################################################ | 100% 
    python_abi-3.7       | 4 KB      | ############################################################################ | 100% 
    readline-7.0         | 391 KB    | ############################################################################ | 100% 
    openssl-1.0.2u       | 3.2 MB    | ############################################################################ | 100% 
    libffi-3.2.1         | 47 KB     | ############################################################################ | 100% 
    libstdcxx-ng-11.2.0  | 4.2 MB    | ############################################################################ | 100% 
    Preparing transaction: done
    Verifying transaction: done
    Executing transaction: done
    #
    # To activate this environment, use
    #
    #     $ conda activate wind_paddle
    #
    # To deactivate an active environment, use
    #
    #     $ conda deactivate
    
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ nvidia-smi
    Fri Mar 25 09:00:53 2022       
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 470.103.01   Driver Version: 470.103.01   CUDA Version: 11.4     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla P100-PCIE...  Off  | 00000000:04:00.0 Off |                    0 |
    | N/A   44C    P0    25W / 250W |      4MiB / 12198MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    |   1  Tesla P100-PCIE...  Off  | 00000000:82:00.0 Off |                    0 |
    | N/A   39C    P0    27W / 250W |      4MiB / 12198MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
                                                                                   
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A      1129      G   /usr/lib/xorg/Xorg                  4MiB |
    |    1   N/A  N/A      1129      G   /usr/lib/xorg/Xorg                  4MiB |
    +-----------------------------------------------------------------------------+
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ lspci | grep -i nvidia
    04:00.0 3D controller: NVIDIA Corporation GP100GL [Tesla P100 PCIe 12GB] (rev a1)
    82:00.0 3D controller: NVIDIA Corporation GP100GL [Tesla P100 PCIe 12GB] (rev a1)
    (base) bim@bim-PowerEdge-R730:~$ 
    (base) bim@bim-PowerEdge-R730:~$ 
    python -m pip install paddlepaddle-gpu==2.2.2.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
    (wind_paddle) bim@bim-PowerEdge-R730:~$ 
    (wind_paddle) bim@bim-PowerEdge-R730:~$ python
    Python 3.7.0 | packaged by conda-forge | (default, Nov 12 2018, 20:15:55) 
    [GCC 7.3.0] :: Anaconda, Inc. on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> 
    >>> 
    >>> 
    >>> 
    >>> import paddle
    >>> 
    >>> 
    >>> paddle.utils.run_check()
    Running verify PaddlePaddle program ... 
    W0325 12:26:23.599056  2118 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 6.0, Driver API Version: 11.4, Runtime API Version: 11.2
    W0325 12:26:23.633646  2118 device_context.cc:465] device: 0, cuDNN Version: 8.1.
    PaddlePaddle works well on 1 GPU.
    W0325 12:26:30.568997  2118 parallel_executor.cc:617] Cannot enable P2P access from 0 to 1
    W0325 12:26:30.569025  2118 parallel_executor.cc:617] Cannot enable P2P access from 1 to 0
    W0325 12:26:32.155738  2118 dynamic_loader.cc:258] You may need to install 'nccl2' from NVIDIA official website: https://developer.nvidia.com/nccl/nccl-downloadbefore install PaddlePaddle.
    WARNING:root:PaddlePaddle meets some problem with 2 GPUs. This may be caused by:
     1. There is not enough GPUs visible on your system
     2. Some GPUs are occupied by other process now
     3. NVIDIA-NCCL2 is not installed correctly on your system. Please follow instruction on https://github.com/NVIDIA/nccl-tests 
     to test your NCCL, or reinstall it following https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html
    WARNING:root:
     Original Error is: (PreconditionNotMet) The third-party dynamic library (libnccl.so) that Paddle depends on is not configured correctly. (error code is libnccl.so: cannot open shared object file: No such file or directory)
      Suggestions:
      1. Check if the third-party dynamic library (e.g. CUDA, CUDNN) is installed correctly and its version is matched with paddlepaddle you installed.
      2. Configure third-party dynamic library environment variables as follows:
      - Linux: set LD_LIBRARY_PATH by `export LD_LIBRARY_PATH=...`
      - Windows: set PATH by `set PATH=XXX; (at /paddle/paddle/fluid/platform/dynload/dynamic_loader.cc:285)
    
    PaddlePaddle is installed successfully ONLY for single GPU! Let's start deep learning with PaddlePaddle now.
    >>> 
    >>> 

    ####################################

  • 相关阅读:
    软件建模之UML图形讲解
    Android中级第八讲安卓子线程,以及定时任务使用讲解
    有你同行,我不会寂寞物联网操作系统Hello China后续开发计划及开发者征集
    物联网操作系统再思考Hello China操作系统的运营商网络协同机制
    Windows Phone 7 Storage
    Silverlight &Windows phone7 中使用Isolated Storage存储与读取图片
    Windows Phone7的Pivot控件简介
    windowsphone7的启动器和选择器
    如何将App的图标放到起始页面
    WebBrowser控件用法总结
  • 原文地址:https://www.cnblogs.com/herd/p/16053175.html
Copyright © 2020-2023  润新知