• yolov5 测试


    yolov5测试

    import argparse
    import time
    from pathlib import Path
    
    import cv2
    import torch
    import torch.backends.cudnn as cudnn
    from numpy import random
    
    import numpy as np
    
    from models.experimental import attempt_load
    
    from utils.datasets import LoadStreams,LoadStreams2, LoadImages,LoadWebcam,letterbox
    
    from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, 
        xyxy2xywh, strip_optimizer, set_logging, increment_path
    from utils.plots import plot_one_box
    from utils.torch_utils import select_device, load_classifier, time_synchronized
    
    
    device = select_device('')
    augment = False
    conf_thres=0.55
    iou_thres=0.45
    model = attempt_load('yolov5s.pt', map_location=device)
    img_size = 640
    
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    
    
    def detectionObjectFunction():
        vc = cv2.VideoCapture(2)
        #rval, frame = vc.read()
        while True:
            rval, cameraImg = vc.read()
    
            
            img = letterbox(cameraImg, new_shape=img_size)[0]
            # Convert
            img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
            img = np.ascontiguousarray(img)
    
            ####################################################
            img = torch.from_numpy(img).to(device)
            #img = img.half() if half else img.float()  # uint8 to fp16/32
            im0 = cameraImg.copy()
            
            img = img.half()
            img = img.float()
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
    
            # Inference
            t1 = time_synchronized()
            pred = model(img, augment=augment)[0]
            #pred = model(img, augment=opt.augment)[0]
    
            #print('thres:%d '%conf_thres)
            # Apply NMS
            pred = non_max_suppression(pred, conf_thres, iou_thres)
            #def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
            t2 = time_synchronized()
            
            # Apply Classifier
            
            # Process detections
            for i, det in enumerate(pred):  # detections per image
                # batch_size >= 1
                #if webcam:  
                #    p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
                #else:
                #    p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
                #    
                #p = Path(p)  # to Path
                #save_path = str(save_dir / p.name)  # img.jpg
                #txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                #s += '%gx%g ' % img.shape[2:]  # print string
    
                # normalization gain whwh
                #gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
                    
                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        #s += f'{n} {names[int(c)]}s, '  # add to string
            
                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        
                        
                        label = f'{names[int(cls)]} {conf:.2f}'
                        #plot_one_box2(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                        #plot_one_box2(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                        #plot_one_box(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                    
                # Print time (inference + NMS)
                print(f'detection time. ({t2 - t1:.3f}s)')
    
                # Stream results
                #if view_img:
                cv2.imshow("win1", im0)
                #img2 = im0.copy()
                
    
    
            ####################################################
            #pass
    
            if cv2.waitKey(10) == 27:
                break
    
    
    
    detectionObjectFunction()

    QQ 3087438119
  • 相关阅读:
    linux 常用快捷键
    命令行远程链接
    mybatis参数错误 Parameter '×××' not found. Available parameters are [0, 1, param1, param2]
    mybatis延迟加载
    mybatis跨XML引用
    eclipse修改项目名称
    wait, WIFEXITED, WEXITSTATUS
    进程通信中如何进行值得传递?
    fork新建进程
    Ubuntu安装genymotion模拟器步骤
  • 原文地址:https://www.cnblogs.com/herd/p/14638403.html
Copyright © 2020-2023  润新知