• KNN算法和实现


     KNN要用到欧氏距离

     KNN下面的缺点很容易使分类出错(比如下面黑色的点)

     下面是KNN算法的三个例子demo,

    第一个例子是根据算法原理实现

    import matplotlib.pyplot as plt
    import numpy as np
    import operator
    # 已知分类的数据
    x1 = np.array([3,2,1])
    y1 = np.array([104,100,81])
    x2 = np.array([101,99,98])
    y2 = np.array([10,5,2])
    scatter1 = plt.scatter(x1,y1,c='r')
    scatter2 = plt.scatter(x2,y2,c='b')
    # 未知数据
    x = np.array([18])
    y = np.array([90])
    scatter3 = plt.scatter(x,y,c='k')
    #画图例
    plt.legend(handles=[scatter1,scatter2,scatter3],labels=['labelA','labelB','X'],loc='best')
    plt.show()
    # 已知分类的数据
    x_data = np.array([[3,104],
                       [2,100],
                       [1,81],
                       [101,10],
                       [99,5],
                       [81,2]])
    y_data = np.array(['A','A','A','B','B','B'])
    x_test = np.array([18,90])
    # 计算样本数量
    x_data_size = x_data.shape[0]
    print(x_data_size)
    # 复制x_test
    print(np.tile(x_test, (x_data_size,1)))
    # 计算x_test与每一个样本的差值
    diffMat = np.tile(x_test, (x_data_size,1)) - x_data
    diffMat
    # 计算差值的平方
    sqDiffMat = diffMat**2
    sqDiffMat
    # 求和
    sqDistances = sqDiffMat.sum(axis=1)
    sqDistances
    # 开方
    distances = sqDistances**0.5
    print(distances)
    # 从小到大排序
    sortedDistances = distances.argsort()#返回distances里的数据从小到大的下标数组
    print(sortedDistances)
    classCount = {}
    # 设置k
    k = 5
    for i in range(k):
        # 获取标签
        votelabel = y_data[sortedDistances[i]]
        # 统计标签数量
        classCount[votelabel] = classCount.get(votelabel,0) + 1#)0表示没有该字典里没有该值时默认为0
    classCount
    # 根据operator.itemgetter(1)-第1个值对classCount排序,然后再取倒序
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True)
    print(sortedClassCount)
    # 获取数量最多的标签
    knnclass = sortedClassCount[0][0]#第一个0表示取第一个键值对('A', 3),第二个0表示取('A', 3)的‘A’
    print(knnclass)

    1
    import numpy as np#对iris数据集进行训练分类 2 from sklearn import datasets 3 from sklearn.model_selection import train_test_split 4 from sklearn.metrics import classification_report,confusion_matrix#对模型分类结果进行评估的两个模型 5 import operator#https://blog.csdn.net/u010339879/article/details/98304292,关于operator的使用 6 import random 7 def knn(x_test, x_data, y_data, k): 8 x_data_size = x_data.shape[0] # 计算样本数量 9 diffMat = np.tile(x_test,(x_data_size,1)) - x_data# 复制x_test,计算x_test与每一个样本的差值 10 sqDiffMat = diffMat**2# # 计算差值的平方 11 sqDistance = sqDiffMat.sum(axis= 1) # 求和 12 distances = sqDistance**0.5 # 开方 13 sortedDistance = distances.argsort()# 从小到大排序 14 classCount = {} 15 for i in range(k): 16 vlabel = y_data[sortedDistance[i]] # 获取标签 17 classCount[vlabel] = classCount.get(vlabel,0)+1# 统计标签数量 18 sortedClassCount = sorted(classCount.items(),key = operator.itemgetter(1), reverse = True) # 根据operator.itemgetter(1)-第1个值对classCount排序,然后再取倒序 19 return sortedClassCount[0][0] 20 iris = datasets.load_iris()# 载入数据 21 x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target, test_size=0.3) 22 #打乱数据 23 # data_size = iris.data.shape[0] 24 # index = [i for i in range(data_size)] 25 # random.shuffle(index) 26 # iris.data = iris.data[index] 27 # iris.target = iris.target[index] 28 # test_size = 40#切分数据集 29 # x_train = iris.data[test_size:] 30 # x_test = iris.data[:test_size] 31 # y_train = iris.target[test_size:] 32 # y_test = iris.target[:test_size] 33 prodictions = [] 34 for i in range(x_test.shape[0]): 35 prodictions.append(knn(x_test[i],x_train,y_train,5)) 36 print(prodictions) 37 print(classification_report(y_test, prodictions)) 38 print(confusion_matrix(y_test,prodictions)) 39 #关于混淆矩阵可以看这篇博客,#https://www.cnblogs.com/missidiot/p/9450662.html
     1 # 导入算法包以及数据集
     2 from sklearn import neighbors
     3 from sklearn import datasets
     4 from sklearn.model_selection import train_test_split
     5 from sklearn.metrics import classification_report
     6 import random
     7 # 载入数据
     8 iris = datasets.load_iris()
     9 #print(iris)
    10 # 打乱数据切分数据集
    11 # x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target, test_size=0.2) #分割数据0.2为测试数据,0.8为训练数据
    12 
    13 #打乱数据
    14 data_size = iris.data.shape[0]
    15 index = [i for i in range(data_size)]
    16 random.shuffle(index)
    17 iris.data = iris.data[index]
    18 iris.target = iris.target[index]
    19 
    20 #切分数据集
    21 test_size = 40
    22 x_train = iris.data[test_size:]
    23 x_test =  iris.data[:test_size]
    24 y_train = iris.target[test_size:]
    25 y_test = iris.target[:test_size]
    26 
    27 # 构建模型
    28 model = neighbors.KNeighborsClassifier(n_neighbors=3)
    29 model.fit(x_train, y_train)
    30 prediction = model.predict(x_test)
    31 print(prediction)
    32 print(classification_report(y_test, prediction))

    这三个代码第一个,第二个是根据底层原理实现knn算法,第三个则是调用库函数处理数据。

     下面一个代码是利用第三个代码中用到的库实现第一个代码功能,可以发现使用系统提供的库,简单许多

     1 from sklearn import  neighbors
     2 from sklearn.model_selection import train_test_split
     3 from sklearn.metrics import classification_report
     4 import numpy as np
     5 x_data = np.array([[3,104],
     6                    [2,100],
     7                    [1,81],
     8                    [101,10],
     9                    [99,5],
    10                    [81,2]])
    11 y_data = np.array(['A','A','A','B','B','B'])
    12 x_test1 = np.array([[18,90]])
    13 x_train, x_test, y_train,y_test = train_test_split(x_data, y_data,test_size= 0.3)
    14 model = neighbors.KNeighborsClassifier(n_neighbors=3)
    15 model.fit(x_train, y_train)
    16 print(x_test1)
    17 prediction = model.predict(x_test1)
    18 print(prediction)
  • 相关阅读:
    原生js实现Ajax请求,包含get和post
    JSP和Servlet的关系
    框架、框架模式和设计模式
    Java技术综述
    传输层和网络层区别(形象解释)
    Vue基本用法:过滤器、生命周期钩子函数和利用webpack 生成项目
    Vue基本用法:组件
    Vue基本用法:计算属性、监听器和表单输入绑定
    Vue基本用法:模板语法和指令系统
    win10想说爱你不容易——安装.net3.5也是一个坑(已有完美解决方法)
  • 原文地址:https://www.cnblogs.com/henuliulei/p/11805253.html
Copyright © 2020-2023  润新知