• POJ 3764 The xor-longest Path


    Description

    In an edge-weighted tree, the xor-length of a path p is defined as the xor sum of the weights of edges on p:

    {xor}length(p)=oplus{e in p}w(e)

    ⊕ is the xor operator.

    We say a path the xor-longest path if it has the largest xor-length. Given an edge-weighted tree with n nodes, can you find the xor-longest path?  

    Input

    The input contains several test cases. The first line of each test case contains an integer n(1<=n<=100000), The following n-1 lines each contains three integers u(0 <= u < n),v(0 <= v < n),w(0 <= w < 2^31), which means there is an edge between node u and v of length w.

    Output

    ​ For each test case output the xor-length of the xor-longest path.

    Sample Input

    4
    0 1 3
    1 2 4
    1 3 6
    

    Sample Output

    7
    

    Hint

    The xor-longest path is 0->1->2, which has length 7 (=3 ⊕ 4)

    Solution

    01Trie经典题,求树上两点路径xor和的最大值。

    我们可以把问题转化一下,先dfs一遍求出这棵树的树上xor前缀和,设为(d[i])

    那么两点之间路径的xor和其实就是(d[i])^(d[j])(因为xor的性质是a^a=0)

    那么就是01Trie的经典操作了。。求两数的xor最大值。套板子即可。

    我怎么又忘记POJ有多组数据啊,我怎么又多组数据又忘记清数组啊。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cstdlib>
    #include <cmath>
    #include <set>
    #include <map>
    #include <vector>
    #include <queue>
    
    #define ll long long
    #define inf 0x3f3f3f3f
    #define il inline
    
    namespace io {
    
        #define in(a) a=read()
        #define out(a) write(a)
        #define outn(a) out(a),putchar('
    ')
    
        #define I_int ll
        inline I_int read() {
            I_int x = 0 , f = 1 ; char c = getchar() ;
            while( c < '0' || c > '9' ) { if( c == '-' ) f = -1 ; c = getchar() ; }
            while( c >= '0' && c <= '9' ) { x = x * 10 + c - '0' ; c = getchar() ; }
            return x * f ;
        }
        char F[ 200 ] ;
        inline void write( I_int x ) {
            if( x == 0 ) { putchar( '0' ) ; return ; }
            I_int tmp = x > 0 ? x : -x ;
            if( x < 0 ) putchar( '-' ) ;
            int cnt = 0 ;
            while( tmp > 0 ) {
                F[ cnt ++ ] = tmp % 10 + '0' ;
                tmp /= 10 ;
            }
            while( cnt > 0 ) putchar( F[ -- cnt ] ) ;
        }
        #undef I_int
    
    }
    using namespace io ;
    
    using namespace std ;
    
    #define N 100100
    
    int n, ch[N * 32][2], tot;
    int d[N];
    int head[N], cnt;
    struct edge {
    	int to, nxt, v;
    }e[N<<1];
    
    void ins(int u, int v, int w) {
    	e[++cnt] = (edge) {v, head[u], w};
    	head[u] = cnt;
    }
    
    void dfs(int u, int fa) {
    	for(int i = head[u]; i; i = e[i].nxt) {
    		int v = e[i].to;
    		if(e[i].to == fa) continue;
    		d[v] = d[u] ^ e[i].v;
    		dfs(e[i].to, u);
    	}
    }
    
    void insert(int x) {
    	int u = 0;
    	for(int i = 30; i >= 0; --i) {
    		int c = (x >> i) & 1;
    		if(!ch[u][c]) ch[u][c] = ++tot;
    		u = ch[u][c];
    	}
    }
    
    int query(int x) {
    	int u = 0, ans = 0;
    	for(int i = 30; i >= 0; --i) {
    		int c = (x >> i) & 1;
    		if(ch[u][c ^ 1]) u = ch[u][c ^ 1], ans += 1ll * (1 << i);
    		else u = ch[u][c];
    	}
    	return ans;
    }
    
    int main() {
    	while(~scanf("%d", &n)) {
    		memset(head, 0, sizeof(head));
    		memset(ch, 0, sizeof(ch));
    		cnt = 0; tot = 0;
    		for(int i = 1, u, v, w; i < n; ++i) {
    			scanf("%d%d%d", &u, &v, &w);
    			ins(u, v, w); ins(v, u, w);
    		}
    		memset(d, 0, sizeof(d));
    		dfs(0, 0);
    		int ans = 0;
    		for(int i = 0; i < n; ++i) {
    			insert(d[i]);
    			ans = max(ans, query(d[i]));
    		}
    		printf("%d
    ", ans);
    	}
    }
    
  • 相关阅读:
    前端性能优化(css动画篇)
    常用的布局及技巧
    一些有用的技能点
    做webApp遇到的一些坑及解决方案
    mysql5.7.30 编译安装
    windows使用Pandoc将Markdown转换为PDF文件
    源码编译安装keepalived
    源码编译php
    源码编译nginx
    源码编译PHP提示zip错误
  • 原文地址:https://www.cnblogs.com/henry-1202/p/10293634.html
Copyright © 2020-2023  润新知