• 【转载】玩转C链表


    ZZ:http://www.cnblogs.com/wwang/archive/2010/11/28/1889281.html

    玩转C链表

    2010-11-28 20:50 by wwang, 4397 visits, 收藏, 编辑

    链表是C语言编程中常用的数据结构,比如我们要建一个整数链表,一般可能这么定义:

    1
    2
    3
    4
    struct int_node {
            int val;
            struct int_node *next;
    };

    为了实现链表的插入、删除、遍历等功能,另外要再实现一系列函数,比如:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    void insert_node(struct int_node **head, int val);
      
    void delete_node(struct int_node *head, struct int_node *current);
      
    void access_node(struct int_node *head)
    {
            struct int_node *node;
            for (node = head; node != NULL; node = node->next) {
                    // do something here
            }
    }

    如果我们的代码里只有这么一个数据结构的话,这样做当然没有问题,但是当代码的规模足够大,需要管理很多种链表,难道需要为每一种链表都要实现一套插入、删除、遍历等功能函数吗?

    熟悉C++的同学可能会说,我们可以用标准模板库啊,但是,我们这里谈的是C,在C语言里有没有比较好的方法呢?

    Mr.Dave在他的博客里介绍了自己的实现,这个实现是个很好的方案,各位不妨可以参考一下。在本文中,我们把目光投向当今开源界最大的C项目--Linux Kernel,看看Linux内核如何解决这个问题。

    Linux内核中一般使用双向链表,声明为struct list_head,这个结构体是在include/linux/types.h中定义的,链表的访问是以宏或者内联函数的形式在include/linux/list.h中定义。

    1
    2
    3
    struct list_head {
        struct list_head *next, *prev;
    };

    Linux内核为链表提供了一致的访问接口。

    1
    2
    3
    4
    5
    void INIT_LIST_HEAD(struct list_head *list);
    void list_add(struct list_head *new, struct list_head *head);
    void list_add_tail(struct list_head *new, struct list_head *head);
    void list_del(struct list_head *entry);
    int list_empty(const struct list_head *head);

    以上只是从Linux内核里摘选的几个常用接口,更多的定义请参考Linux内核源代码

    我们先通过一个简单的实作来对Linux内核如何处理链表建立一个感性的认识。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    #include <stdio.h>
    #include "list.h"
      
    struct int_node {
            int val;
            struct list_head list;
    };
      
    int main()
    {
            struct list_head head, *plist;
            struct int_node a, b;
      
            a.val = 2;
            b.val = 3;
      
            INIT_LIST_HEAD(&head);
            list_add(&a.list, &head);
            list_add(&b.list, &head);
      
            list_for_each(plist, &head) {
                    struct int_node *node = list_entry(plist, struct int_node, list);
                    printf("val = %d\n", node->val);
            }
      
            return 0;
    }

    看完这个实作,是不是觉得在C代码里管理一个链表也很简单呢?

    代码中包含的头文件list.h是我从Linux内核里抽取出来并做了一点修改的链表处理代码,现附在这里给大家参考,使用的时候只要把这个头文件包含到自己的工程里即可。

    代码
    #ifndef __C_LIST_H
    #define __C_LIST_H

    typedef unsigned
    char u8;
    typedef unsigned
    short u16;
    typedef unsigned
    int u32;
    typedef unsigned
    long size_t;

    #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

    /**
    * container_of - cast a member of a structure out to the containing structure
    * @ptr: the pointer to the member.
    * @type: the type of the container struct this is embedded in.
    * @member: the name of the member within the struct.
    *
    */
    #define container_of(ptr, type, member) (type *)((char *)ptr -offsetof(type,member))

    /*
    * These are non-NULL pointers that will result in page faults
    * under normal circumstances, used to verify that nobody uses
    * non-initialized list entries.
    */
    #define LIST_POISON1 ((void *) 0x00100100)
    #define LIST_POISON2 ((void *) 0x00200200)

    struct list_head {
    struct list_head *next, *prev;
    };

    /**
    * list_entry - get the struct for this entry
    * @ptr: the &struct list_head pointer.
    * @type: the type of the struct this is embedded in.
    * @member: the name of the list_struct within the struct.
    */
    #define list_entry(ptr, type, member) \
    container_of(ptr, type, member)


    #define LIST_HEAD_INIT(name) { &(name), &(name) }

    #define LIST_HEAD(name) \
    struct list_head name = LIST_HEAD_INIT(name)

    static inline void INIT_LIST_HEAD(struct list_head *list)
    {
    list
    ->next = list;
    list
    ->prev = list;
    }

    /**
    * list_for_each - iterate over a list
    * @pos: the &struct list_head to use as a loop counter.
    * @head: the head for your list.
    */
    #define list_for_each(pos, head) \
    for (pos = (head)->next; pos != (head); pos = pos->next)

    /**
    * list_for_each_r - iterate over a list reversely
    * @pos: the &struct list_head to use as a loop counter.
    * @head: the head for your list.
    */
    #define list_for_each_r(pos, head) \
    for (pos = (head)->prev; pos != (head); pos = pos->prev)

    /*
    * Insert a new entry between two known consecutive entries.
    *
    * This is only for internal list manipulation where we know
    * the prev/next entries already!
    */
    static inline void __list_add(struct list_head *new,
    struct list_head *prev,
    struct list_head *next)
    {
    next
    ->prev = new;
    new->next = next;
    new->prev = prev;
    prev
    ->next = new;
    }

    /**
    * list_add - add a new entry
    * @new: new entry to be added
    * @head: list head to add it after
    *
    * Insert a new entry after the specified head.
    * This is good for implementing stacks.
    */
    static inline void list_add(struct list_head *new, struct list_head *head)
    {
    __list_add(
    new, head, head->next);
    }

    /**
    * list_add_tail - add a new entry
    * @new: new entry to be added
    * @head: list head to add it before
    *
    * Insert a new entry before the specified head.
    * This is useful for implementing queues.
    */
    static inline void list_add_tail(struct list_head *new, struct list_head *head)
    {
    __list_add(
    new, head->prev, head);
    }

    /*
    * Delete a list entry by making the prev/next entries
    * point to each other.
    *
    * This is only for internal list manipulation where we know
    * the prev/next entries already!
    */
    static inline void __list_del(struct list_head * prev, struct list_head * next)
    {
    next
    ->prev = prev;
    prev
    ->next = next;
    }

    /**
    * list_del - deletes entry from list.
    * @entry: the element to delete from the list.
    * Note: list_empty on entry does not return true after this, the entry is
    * in an undefined state.
    */
    static inline void list_del(struct list_head *entry)
    {
    __list_del(entry
    ->prev, entry->next);
    entry
    ->next = LIST_POISON1;
    entry
    ->prev = LIST_POISON2;
    }

    /**
    * list_empty - tests whether a list is empty
    * @head: the list to test.
    */
    static inline int list_empty(const struct list_head *head)
    {
    return head->next == head;
    }

    static inline void __list_splice(struct list_head *list,
    struct list_head *head)
    {
    struct list_head *first = list->next;
    struct list_head *last = list->prev;
    struct list_head *at = head->next;

    first
    ->prev = head;
    head
    ->next = first;

    last
    ->next = at;
    at
    ->prev = last;
    }

    /**
    * list_splice - join two lists
    * @list: the new list to add.
    * @head: the place to add it in the first list.
    */
    static inline void list_splice(struct list_head *list, struct list_head *head)
    {
    if (!list_empty(list))
    __list_splice(list, head);
    }

    #endif // __C_LIST_H

    list_head通常是嵌在数据结构内使用,在上文的实作中我们还是以整数链表为例,int_node的定义如下:

    1
    2
    3
    4
    struct int_node {
            int val;
            struct list_head list;
    };

    使用list_head组织的链表的结构如下图所示:

    遍历链表是用宏list_for_each来完成。

    1
    2
    3
    #define list_for_each(pos, head) \
        for (pos = (head)->next; prefetch(pos->next), pos != (head); \
                pos = pos->next)

    在这里,pos和head均是struct list_head。在遍历的过程中如果需要访问节点,可以用list_entry来取得这个节点的基址。

    1
    2
    #define list_entry(ptr, type, member) \
        container_of(ptr, type, member)

    我们来看看container_of是如何实现的。如下图所示,我们已经知道TYPE结构中MEMBER的地址,如果要得到这个结构体的地址,只需要知道MEMBER在结构体中的偏移量就可以了。如何得到这个偏移量地址呢?这里用到C语言的一个小技巧,我们不妨把结构体投影到地址为0的地方,那么成员的绝对地址就是偏移量。得到偏移量之后,再根据ptr指针指向的地址,就可以很容易的计算出结构体的地址。

    list_entry就是通过上面的方法从ptr指针得到我们需要的type结构体。

    Linux内核代码博大精深,陈莉君老师曾把它形容为“覆压三百余里,隔离天日”(摘自《阿房宫赋》),可见其内容之丰富、结构之庞杂。内核里有着众多重要的数据结构,具有相关性的数据结构之间很多都是用本文介绍的链表组织在一起,看来list_head结构虽小,作用可真不小。

    Linux内核是个伟大的工程,其源代码里还有很多精妙之处,值得C/C++程序员认真去阅读,即使我们不去做内核相关的工作,阅读精彩的代码对程序员自我修养的提高也是大有裨益的。

  • 相关阅读:
    Unity Glossary
    Event-Driven Programming: Introduction, Tutorial, History (Stephen Ferg 著)
    2019年11月
    2019年10月
    2019年9月
    LuaFramework 学习
    xLua 学习
    2019年8月
    【原】AFNetworking源码阅读(二)
    【原】AFNetworking源码阅读(一)
  • 原文地址:https://www.cnblogs.com/hengfeng/p/2311860.html
Copyright © 2020-2023  润新知