• 使用SSD目标检测c++接口编译问题解决记录


    本来SSD做测试的Python接口用起来也是比较方便的,但是如果部署集成的话,肯定要用c++环境,于是动手鼓捣了一下。

    编译用的cmake,写的CMakeList.txt,期间碰到一些小问题,简单记录一下问题以及解决方法。

    当然前提是你本地的caffe环境没啥问题。各种依赖都安好了。。

    1.error: ‘AnnotatedDatum’ has not been declared    AnnotatedDatum* anno_datum);

    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:192:40: error: ‘AnnotatedDatum_AnnotationType’ does not name a type
         const std::string& encoding, const AnnotatedDatum_AnnotationType type,
                                            ^
    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:194:5: error: ‘AnnotatedDatum’ has not been declared
         AnnotatedDatum* anno_datum);
         ^
    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:199:11: error: ‘AnnotatedDatum_AnnotationType’ does not name a type
         const AnnotatedDatum_AnnotationType type, const string& labeltype,
               ^
    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:200:49: error: ‘AnnotatedDatum’ has not been declared
         const std::map<string, int>& name_to_label, AnnotatedDatum* anno_datum) {
                                                     ^
    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:208:5: error: ‘AnnotatedDatum’ has not been declared
         AnnotatedDatum* anno_datum);
         ^
    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:212:5: error: ‘AnnotatedDatum’ has not been declared
         AnnotatedDatum* anno_datum);
         ^
    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:215:22: error: ‘AnnotatedDatum’ has not been declared
         const int width, AnnotatedDatum* anno_datum);
                          ^
    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:218:30: error: ‘LabelMap’ has not been declared
         const string& delimiter, LabelMap* map);
                                  ^
    /home/jiawenhao/ssd/caffe/include/caffe/util/io.hpp:221:32: error: ‘LabelMap’ has not been declared
           bool include_background, LabelMap* map) {
                                    ^

    这个问题拿去google了一下,https://github.com/BVLC/caffe/issues/5671提示说是

    caffe.pb.h这个文件有问题。

    在本地find了一下,

    发现是有这个文件的,

    于是在/ssd/caffe/include/caffe下 mkdir一下 proto,然后把 caffe.bp.h 复制过来就好了

    如果没有 caffe.pb.h可以用命令生成这个文件,生成方法google一下就好了。。。。

    2.链接库的问题。错误提示说明用到了这个库,但是程序没找到。在CMakeList.txt里填上 libflags.so即可 ,其他so库同理。

    /usr/bin/ld: CMakeFiles/ssd_detect.dir/ssd_detect.cpp.o: undefined reference to symbol '_ZN6google14FlagRegistererC1EPKcS2_S2_S2_PvS3_'
    /usr/lib/x86_64-linux-gnu/libgflags.so.2: error adding symbols: DSO missing from command line
    collect2: error: ld returned 1 exit status
    CMakeFiles/ssd_detect.dir/build.make:102: recipe for target 'ssd_detect' failed
    make[2]: *** [ssd_detect] Error 1

    这个是CMakeList.txt内容。 就是指定好include路径,还有需要用到的各种库的路径。

    cmake_minimum_required (VERSION 2.8)  
    add_definitions(-std=c++11)
    project (ssd_detect)  
      
    add_executable(ssd_detect ssd_detect.cpp)  
      
    include_directories (/home/yourpath/ssd/caffe/include      
        /usr/include    
        /usr/local/include  
        /usr/local/cuda/include    
             
         )  
      
    target_link_libraries(ssd_detect  
         /home/yourpath/ssd/caffe/build/lib/libcaffe.so
         /usr/local/lib/libopencv_core.so 
         /usr/local/lib/libopencv_imgproc.so
         /usr/local/lib/libopencv_imgcodecs.so 
        /usr/local/lib/libopencv_highgui.so
        /usr/local/lib/libopencv_videoio.so
        /usr/lib/x86_64-linux-gnu/libgflags.so     
        /usr/lib/x86_64-linux-gnu/libglog.so    
        /usr/lib/x86_64-linux-gnu/libprotobuf.so    
        /usr/lib/x86_64-linux-gnu/libboost_system.so    
        )  

     3.发现github上下载的默认的ssd_detect.cpp默认没有添加 using namespace std;

    添加之后,会有错误。 error: reference to ‘shared_ptr’ is ambiguous

    ssd_detect.cpp:54:3: error: reference to ‘shared_ptr’ is ambiguous
       shared_ptr<Net<float> > net_;
       ^
    In file included from /usr/include/c++/5/bits/shared_ptr.h:52:0,
                     from /usr/include/c++/5/memory:82,
                     from /usr/include/boost/config/no_tr1/memory.hpp:21,
                     from /usr/include/boost/smart_ptr/shared_ptr.hpp:23,
                     from /usr/include/boost/shared_ptr.hpp:17,
                     from /home/jiawenhao/ssd/caffe/include/caffe/common.hpp:4,
                     from /home/jiawenhao/ssd/caffe/include/caffe/blob.hpp:8,
                     from /home/jiawenhao/ssd/caffe/include/caffe/caffe.hpp:7,
                     from /data/jiawenhao/ssdtest/ssd_detect.cpp:16:
    /usr/include/c++/5/bits/shared_ptr_base.h:345:11: note: candidates are: template<class _Tp> class std::shared_ptr
         class shared_ptr;
               ^
    In file included from /usr/include/boost/throw_exception.hpp:42:0,
                     from /usr/include/boost/smart_ptr/shared_ptr.hpp:27,
                     from /usr/include/boost/shared_ptr.hpp:17,
                     from /home/jiawenhao/ssd/caffe/include/caffe/common.hpp:4,
                     from /home/jiawenhao/ssd/caffe/include/caffe/blob.hpp:8,
                     from /home/jiawenhao/ssd/caffe/include/caffe/caffe.hpp:7,
                     from /data/jiawenhao/ssdtest/ssd_detect.cpp:16:
    /usr/include/boost/exception/exception.hpp:148:11: note:                 template<class T> class boost::shared_ptr
         class shared_ptr;
               ^
    /data/jiawenhao/ssdtest/ssd_detect.cpp: In constructor ‘Detector::Detector(const string&, const string&, const string&, const string&)’:
    /data/jiawenhao/ssdtest/ssd_detect.cpp:71:3: error: ‘net_’ was not declared in this scope
       net_.reset(new Net<float>(model_file, TEST));

    shared_ptr<Net<float> > net_前面添加上boost即可。

    boost::shared_ptr<Net<float> > net_;

    修改后的ssd_detect.cpp源码如下:

    // This is a demo code for using a SSD model to do detection.
    // The code is modified from examples/cpp_classification/classification.cpp.
    // Usage:
    //    ssd_detect [FLAGS] model_file weights_file list_file
    //
    // where model_file is the .prototxt file defining the network architecture, and
    // weights_file is the .caffemodel file containing the network parameters, and
    // list_file contains a list of image files with the format as follows:
    //    folder/img1.JPEG
    //    folder/img2.JPEG
    // list_file can also contain a list of video files with the format as follows:
    //    folder/video1.mp4
    //    folder/video2.mp4
    //
    #define USE_OPENCV 1
    #include <caffe/caffe.hpp>
    #ifdef USE_OPENCV
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #endif  // USE_OPENCV
    #include <algorithm>
    #include <iomanip>
    #include <iosfwd>
    #include <memory>
    #include <string>
    #include <utility>
    #include <vector>
    
    #ifdef USE_OPENCV
    
    using namespace caffe;  // NOLINT(build/namespaces)
    using namespace cv;
    using namespace std;
    
    class Detector {
     public:
      Detector(const string& model_file,
               const string& weights_file,
               const string& mean_file,
               const string& mean_value);
    
      std::vector<vector<float> > Detect(const cv::Mat& img);
    
     private:
      void SetMean(const string& mean_file, const string& mean_value);
    
      void WrapInputLayer(std::vector<cv::Mat>* input_channels);
    
      void Preprocess(const cv::Mat& img,
                      std::vector<cv::Mat>* input_channels);
    
     private:
      boost::shared_ptr<Net<float> > net_;
      cv::Size input_geometry_;
      int num_channels_;
      cv::Mat mean_;
    };
    
    Detector::Detector(const string& model_file,
                       const string& weights_file,
                       const string& mean_file,
                       const string& mean_value) {
    #ifdef CPU_ONLY
      Caffe::set_mode(Caffe::CPU);
    #else
      Caffe::set_mode(Caffe::GPU);
    #endif
    
      /* Load the network. */
      net_.reset(new Net<float>(model_file, TEST));
      net_->CopyTrainedLayersFrom(weights_file);
    
      CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
      CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
    
      Blob<float>* input_layer = net_->input_blobs()[0];
      num_channels_ = input_layer->channels();
      CHECK(num_channels_ == 3 || num_channels_ == 1)
        << "Input layer should have 1 or 3 channels.";
      input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
    
      /* Load the binaryproto mean file. */
      SetMean(mean_file, mean_value);
    }
    
    std::vector<vector<float> > Detector::Detect(const cv::Mat& img) {
      Blob<float>* input_layer = net_->input_blobs()[0];
      input_layer->Reshape(1, num_channels_,
                           input_geometry_.height, input_geometry_.width);
      /* Forward dimension change to all layers. */
      net_->Reshape();
    
      std::vector<cv::Mat> input_channels;
      WrapInputLayer(&input_channels);
    
      Preprocess(img, &input_channels);
    
      net_->Forward();
    
      /* Copy the output layer to a std::vector */
      Blob<float>* result_blob = net_->output_blobs()[0];
      const float* result = result_blob->cpu_data();
      const int num_det = result_blob->height();
      vector<vector<float> > detections;
      for (int k = 0; k < num_det; ++k) {
        if (result[0] == -1) {
          // Skip invalid detection.
          result += 7;
          continue;
        }
        vector<float> detection(result, result + 7);
        detections.push_back(detection);
        result += 7;
      }
      return detections;
    }
    
    /* Load the mean file in binaryproto format. */
    void Detector::SetMean(const string& mean_file, const string& mean_value) {
      cv::Scalar channel_mean;
      if (!mean_file.empty()) {
        CHECK(mean_value.empty()) <<
          "Cannot specify mean_file and mean_value at the same time";
        BlobProto blob_proto;
        ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
    
        /* Convert from BlobProto to Blob<float> */
        Blob<float> mean_blob;
        mean_blob.FromProto(blob_proto);
        CHECK_EQ(mean_blob.channels(), num_channels_)
          << "Number of channels of mean file doesn't match input layer.";
    
        /* The format of the mean file is planar 32-bit float BGR or grayscale. */
        std::vector<cv::Mat> channels;
        float* data = mean_blob.mutable_cpu_data();
        for (int i = 0; i < num_channels_; ++i) {
          /* Extract an individual channel. */
          cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
          channels.push_back(channel);
          data += mean_blob.height() * mean_blob.width();
        }
    
        /* Merge the separate channels into a single image. */
        cv::Mat mean;
        cv::merge(channels, mean);
    
        /* Compute the global mean pixel value and create a mean image
         * filled with this value. */
        channel_mean = cv::mean(mean);
        mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
      }
      if (!mean_value.empty()) {
        CHECK(mean_file.empty()) <<
          "Cannot specify mean_file and mean_value at the same time";
        stringstream ss(mean_value);
        vector<float> values;
        string item;
        while (getline(ss, item, ',')) {
          float value = std::atof(item.c_str());
          values.push_back(value);
        }
        CHECK(values.size() == 1 || values.size() == num_channels_) <<
          "Specify either 1 mean_value or as many as channels: " << num_channels_;
    
        std::vector<cv::Mat> channels;
        for (int i = 0; i < num_channels_; ++i) {
          /* Extract an individual channel. */
          cv::Mat channel(input_geometry_.height, input_geometry_.width, CV_32FC1,
              cv::Scalar(values[i]));
          channels.push_back(channel);
        }
        cv::merge(channels, mean_);
      }
    }
    
    /* Wrap the input layer of the network in separate cv::Mat objects
     * (one per channel). This way we save one memcpy operation and we
     * don't need to rely on cudaMemcpy2D. The last preprocessing
     * operation will write the separate channels directly to the input
     * layer. */
    void Detector::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
      Blob<float>* input_layer = net_->input_blobs()[0];
    
      int width = input_layer->width();
      int height = input_layer->height();
      float* input_data = input_layer->mutable_cpu_data();
      for (int i = 0; i < input_layer->channels(); ++i) {
        cv::Mat channel(height, width, CV_32FC1, input_data);
        input_channels->push_back(channel);
        input_data += width * height;
      }
    }
    
    void Detector::Preprocess(const cv::Mat& img,
                                std::vector<cv::Mat>* input_channels) {
      /* Convert the input image to the input image format of the network. */
      cv::Mat sample;
      if (img.channels() == 3 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
      else if (img.channels() == 4 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
      else if (img.channels() == 4 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
      else if (img.channels() == 1 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
      else
        sample = img;
    
      cv::Mat sample_resized;
      if (sample.size() != input_geometry_)
        cv::resize(sample, sample_resized, input_geometry_);
      else
        sample_resized = sample;
    
      cv::Mat sample_float;
      if (num_channels_ == 3)
        sample_resized.convertTo(sample_float, CV_32FC3);
      else
        sample_resized.convertTo(sample_float, CV_32FC1);
    
      cv::Mat sample_normalized;
      cv::subtract(sample_float, mean_, sample_normalized);
    
      /* This operation will write the separate BGR planes directly to the
       * input layer of the network because it is wrapped by the cv::Mat
       * objects in input_channels. */
      cv::split(sample_normalized, *input_channels);
    
      CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
            == net_->input_blobs()[0]->cpu_data())
        << "Input channels are not wrapping the input layer of the network.";
    }
    
    DEFINE_string(mean_file, "",
        "The mean file used to subtract from the input image.");
    DEFINE_string(mean_value, "104,117,123",
        "If specified, can be one value or can be same as image channels"
        " - would subtract from the corresponding channel). Separated by ','."
        "Either mean_file or mean_value should be provided, not both.");
    DEFINE_string(file_type, "image",
        "The file type in the list_file. Currently support image and video.");
    DEFINE_string(out_file, "",
        "If provided, store the detection results in the out_file.");
    DEFINE_double(confidence_threshold, 0.6,
        "Only store detections with score higher than the threshold.");
    
    vector<string> labels = {"background", 
                             "aeroplane", "bicycle","bird", "boat", "bottle",
                            "bus", "car", "cat","chair","cow",
                            "diningtable","dog","horse","motorbike","person",
                            "pottedplant","sheep","sofa","train","tvmonitor"};
    
    int main(int argc, char** argv) {
    
      const string& model_file = "deploy.prototxt";
      const string& weights_file = "/home/jiawenhao/ssd/caffe/models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_120000.caffemodel";
      const string& mean_file = FLAGS_mean_file;
      const string& mean_value = "104, 117, 123";
      const string& file_type = "image";
      const string& out_file = "a.outfile";
      const float confidence_threshold = 0.6;
    
      // Initialize the network.
      Detector detector(model_file, weights_file, mean_file, mean_value);
    
      // Set the output mode.
      std::streambuf* buf = std::cout.rdbuf();
      std::ofstream outfile;
      if (!out_file.empty()) {
        outfile.open(out_file.c_str());
        if (outfile.good()) {
          buf = outfile.rdbuf();
        }
      }
      std::ostream out(buf);
    
      // Process image one by one.
      std::ifstream infile("testimg.list");
      std::string file;
      std::string imgName;
    
      int cnt = 0;
      while (infile >> file) 
      {
        if (file_type == "image")
        {
           std::cout << file <<"    "<<cnt++<<std::endl;
           int pos = file.find_last_of('/');
           imgName = file.substr(pos + 1, file.size() - pos);
    
          cv::Mat img = cv::imread(file, -1);
          CHECK(!img.empty()) << "Unable to decode image " << file;
          std::vector<vector<float> > detections = detector.Detect(img);
    
          /* Print the detection results. */
          for (int i = 0; i < detections.size(); ++i) {
            const vector<float>& d = detections[i];
            // Detection format: [image_id, label, score, xmin, ymin, xmax, ymax].
            CHECK_EQ(d.size(), 7);
            const float score = d[2];
            if (score >= confidence_threshold) {
              out << file << " ";
              out << static_cast<int>(d[1]) << " ";
              out << score << " ";
              out << static_cast<int>(d[3] * img.cols) << " ";
              out << static_cast<int>(d[4] * img.rows) << " ";
              out << static_cast<int>(d[5] * img.cols) << " ";
              out << static_cast<int>(d[6] * img.rows) << std::endl;
    
    
              int x = static_cast<int>(d[3] * img.cols);
              int y = static_cast<int>(d[4] * img.rows);
              int width = static_cast<int>(d[5] * img.cols) - x;
              int height = static_cast<int>(d[6] * img.rows) - y;
    
              Rect rect(max(x,0), max(y,0), width, height);
    
              rectangle(img, rect, Scalar(0,255,0));
              string sco = to_string(score).substr(0, 5);
              putText(img, labels[static_cast<int>(d[1])] + ":" + sco, Point(max(x, 0), max(y + height / 2, 0)),
                  FONT_HERSHEY_SIMPLEX, 1, Scalar(0,255,0));
              imwrite("result/" + imgName, img);
            }
          }
        } else if (file_type == "video") {
          cv::VideoCapture cap(file);
          if (!cap.isOpened()) {
            LOG(FATAL) << "Failed to open video: " << file;
          }
          cv::Mat img;
          int frame_count = 0;
          while (true) {
            bool success = cap.read(img);
            if (!success) {
              LOG(INFO) << "Process " << frame_count << " frames from " << file;
              break;
            }
            CHECK(!img.empty()) << "Error when read frame";
            std::vector<vector<float> > detections = detector.Detect(img);
    
            /* Print the detection results. */
            for (int i = 0; i < detections.size(); ++i) {
              const vector<float>& d = detections[i];
              // Detection format: [image_id, label, score, xmin, ymin, xmax, ymax].
              CHECK_EQ(d.size(), 7);
              const float score = d[2];
              if (score >= confidence_threshold) {
                out << file << "_";
                out << std::setfill('0') << std::setw(6) << frame_count << " ";
                out << static_cast<int>(d[1]) << " ";
                out << score << " ";
                out << static_cast<int>(d[3] * img.cols) << " ";
                out << static_cast<int>(d[4] * img.rows) << " ";
                out << static_cast<int>(d[5] * img.cols) << " ";
                out << static_cast<int>(d[6] * img.rows) << std::endl;
              }
            }
            ++frame_count;
          }
          if (cap.isOpened()) {
            cap.release();
          }
        } else {
          LOG(FATAL) << "Unknown file_type: " << file_type;
        }
      }
      return 0;
    }
    #else
    int main(int argc, char** argv) {
      LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
    }
    #endif  // USE_OPENCV

     最后,放一张识别结果:

  • 相关阅读:
    AutoCAD快速开发框架之菜单Menu
    AutoCAD快速开发框架之插件Plugin
    探秘AutoCAD中的阵列
    Developing Associative Functionality in AutoCAD(转)
    Getting Block Name from Associative Array(转)
    Developing associative features in AutoCAD(转)
    外部文件创建块
    AutoCAD支持的.NET SDK以及.NET Framework版本
    Flutter异步获取网络数据
    swift使用google admod的横幅,插页式,激励式广告示例
  • 原文地址:https://www.cnblogs.com/hellowooorld/p/9759522.html
Copyright © 2020-2023  润新知