• OpenCV学习4-----K-Nearest Neighbors(KNN)demo


    最近用到KNN方法,学习一下OpenCV给出的demo。

    demo大意是随机生成两团二维空间中的点,然后在500*500的二维空间平面上,计算每一个点属于哪一个类,然后用红色和绿色显示出来每一个点

    如下是一系demo里用到的相关函数。

     

    运行效果:

    红色背景应该是表示每一个像素的类别标签和红色的点的标签相同。同理,绿色背景表示绿色的像素与绿色的点是同一个类的。

    demo.cpp:

    #include "ml.h"
    #include "highgui.h"
    
    int main( int argc, char** argv )
    {
        const int K = 10;
        int i, j, k, accuracy;
        float response;
        int train_sample_count = 100;
        CvRNG rng_state = cvRNG(-1);
        CvMat* trainData = cvCreateMat( train_sample_count, 2, CV_32FC1 );
        CvMat* trainClasses = cvCreateMat( train_sample_count, 1, CV_32FC1 );
        IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );
        float _sample[2];
        CvMat sample = cvMat( 1, 2, CV_32FC1, _sample );
        cvZero( img );
    
        CvMat trainData1, trainData2, trainClasses1, trainClasses2;
    
        // form the training samples
        cvGetRows( trainData, &trainData1, 0, train_sample_count/2 );
        cvRandArr( &rng_state, &trainData1, CV_RAND_NORMAL, cvScalar(200,200), cvScalar(50,50) );
    
        cvGetRows( trainData, &trainData2, train_sample_count/2, train_sample_count );
        cvRandArr( &rng_state, &trainData2, CV_RAND_NORMAL, cvScalar(300,300), cvScalar(50,50) );
    
        cvGetRows( trainClasses, &trainClasses1, 0, train_sample_count/2 );
        cvSet( &trainClasses1, cvScalar(1) );
    
        cvGetRows( trainClasses, &trainClasses2, train_sample_count/2, train_sample_count );
        cvSet( &trainClasses2, cvScalar(2) );
    
        // learn classifier
        CvKNearest knn( trainData, trainClasses, 0, false, K );
        CvMat* nearests = cvCreateMat( 1, K, CV_32FC1);
    
        for( i = 0; i < img->height; i++ )
        {
            for( j = 0; j < img->width; j++ )
            {
                sample.data.fl[0] = (float)j;
                sample.data.fl[1] = (float)i;
    
                // estimate the response and get the neighbors' labels
                response = knn.find_nearest(&sample,K,0,0,nearests,0);
    
                // compute the number of neighbors representing the majority
                for( k = 0, accuracy = 0; k < K; k++ )
                {
                    if( nearests->data.fl[k] == response)
                        accuracy++;
                }
                // highlight the pixel depending on the accuracy (or confidence)
                cvSet2D( img, i, j, response == 1 ?
                    (accuracy > 5 ? CV_RGB(180,0,0) : CV_RGB(180,120,0)) :
                    (accuracy > 5 ? CV_RGB(0,180,0) : CV_RGB(120,120,0)) );
            }
        }
    
        // display the original training samples
        for( i = 0; i < train_sample_count/2; i++ )
        {
            CvPoint pt;
            pt.x = cvRound(trainData1.data.fl[i*2]);
            pt.y = cvRound(trainData1.data.fl[i*2+1]);
            cvCircle( img, pt, 2, CV_RGB(255,0,0), CV_FILLED );
            pt.x = cvRound(trainData2.data.fl[i*2]);
            pt.y = cvRound(trainData2.data.fl[i*2+1]);
            cvCircle( img, pt, 2, CV_RGB(0,255,0), CV_FILLED );
        }
    
        cvNamedWindow( "classifier result", 1 );
        cvShowImage( "classifier result", img );
        cvWaitKey(0);
    
        cvReleaseMat( &trainClasses );
        cvReleaseMat( &trainData );
        return 0;
    }

    参考:

    https://docs.opencv.org/2.4/modules/ml/doc/k_nearest_neighbors.html

    https://docs.opencv.org/2.4/modules/core/doc/old_basic_structures.html?highlight=cvset#void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value)

  • 相关阅读:
    docker-compose常用命令-详解
    Docker的4种网络模式
    docker-compose常用命令-详解
    windows 10安装nodejs(npm,cnpm),在谷歌浏览器上安装vue开发者工具 vue Devtools
    @Pointcut注解
    leetcode做题总结
    win10右键添加在此处打开powershell
    怎样从 bat 批处理文件调用 PowerShell 脚本
    Android Google Play app signing 最终完美解决方式
    526. Beautiful Arrangement
  • 原文地址:https://www.cnblogs.com/hellowooorld/p/7921503.html
Copyright © 2020-2023  润新知