读取Microsoft Excel文件
In [104]: xlsx = pd.ExcelFile('examples/ex1.xlsx') In [105]: pd.read_excel(xlsx, 'Sheet1') Out[105]: a b c d message 0 1 2 3 4 hello 1 5 6 7 8 world 2 9 10 11 12 foo
In [106]: frame = pd.read_excel('examples/ex1.xlsx', 'Sheet1') In [107]: frame Out[107]: a b c d message 0 1 2 3 4 hello 1 5 6 7 8 world 2 9 10 11 12 foo
将pandas数据写入为Excel格式
In [109]: frame.to_excel('examples/ex2.xlsx', 'Sheet1') In [110]: writer.save()
Web APIs交互
许多网站都有一些通过JSON或其他格式提供数据的公共API。通过Python访问这些API的办法有不少。一个简单易用的办法(推荐)是requests包(http://docs.python-requests.org)。
In [113]: import requests In [114]: url = 'https://api.github.com/repos/pandas-dev/pandas/issues' In [115]: resp = requests.get(url) In [116]: resp Out[116]: <Response [200]>
响应对象的json方法会返回一个包含被解析过的JSON字典,加载到一个Python对象中:
In [117]: data = resp.json() In [118]: data[0]['title'] Out[118]: 'Period does not round down for frequencies less that 1 hour'
data中的每个元素都是一个包含所有GitHub主题页数据(不包含评论)的字典。我们可以直接传递数据到DataFrame,并提取感兴趣的字段:
In [119]: issues = pd.DataFrame(data, columns=['number', 'title', .....: 'labels', 'state']) In [120]: issues