• 调度器27—Freq Qos 和 限频流程 Hello


    基于 Linux-5.10

    一、概述

    freq qos 主要用于cpu调频使用的,基于qos中的实现。与pm qos不同的是,前者只有系统级实现,位于 kernel/power/qos.c 中。


    二、相关结构

    enum pm_qos_req_action {
        PM_QOS_ADD_REQ,        /* Add a new request */
        PM_QOS_UPDATE_REQ,    /* Update an existing request */
        PM_QOS_REMOVE_REQ    /* Remove an existing request */
    };
    
    #define FREQ_QOS_MIN_DEFAULT_VALUE    0
    #define FREQ_QOS_MAX_DEFAULT_VALUE    S32_MAX
    
    enum pm_qos_type {
        PM_QOS_UNITIALIZED,
        PM_QOS_MAX,        /* return the largest value */
        PM_QOS_MIN,        /* return the smallest value */
    };
    
    enum freq_qos_req_type {
        FREQ_QOS_MIN = 1,
        FREQ_QOS_MAX,
    };
    
    struct pm_qos_constraints {
        struct plist_head list; //所有此限制的freq_qos_request通过其pnode节点挂在这里
        /* Do not change to 64 bit */
        s32 target_value; //此限制,Qos最终体现的值
        s32 default_value; 
        s32 no_constraint_value;
        enum pm_qos_type type;
        struct blocking_notifier_head *notifiers;
    };
    
    struct freq_constraints {
        struct pm_qos_constraints min_freq;
        struct blocking_notifier_head min_freq_notifiers;
        struct pm_qos_constraints max_freq;
        struct blocking_notifier_head max_freq_notifiers;
    };
    
    struct freq_qos_request {
        enum freq_qos_req_type type;
        struct plist_node pnode; //数据是存在其prio成员中
        struct freq_constraints *qos;
        ANDROID_OEM_DATA_ARRAY(1, 2);
    };

    对频点的限制是一个区间,有最大值和最小值,所以 freq_constraints 中使用两个 pm_qos_constraints 成员表示。由结构中的两个notifier head可知,极大值和极小值改变后也是分别通知的。


    三、相关函数

    1. freq_constraints_init

    /**
     * freq_constraints_init - Initialize frequency QoS constraints.
     * @qos: Frequency QoS constraints to initialize.
     */
    void freq_constraints_init(struct freq_constraints *qos)
    {
        struct pm_qos_constraints *c;
    
        c = &qos->min_freq;
        plist_head_init(&c->list);
        c->target_value = FREQ_QOS_MIN_DEFAULT_VALUE;
        c->default_value = FREQ_QOS_MIN_DEFAULT_VALUE;
        c->no_constraint_value = FREQ_QOS_MIN_DEFAULT_VALUE;
        c->type = PM_QOS_MAX;
        c->notifiers = &qos->min_freq_notifiers;
        BLOCKING_INIT_NOTIFIER_HEAD(c->notifiers);
    
        c = &qos->max_freq;
        plist_head_init(&c->list);
        c->target_value = FREQ_QOS_MAX_DEFAULT_VALUE;
        c->default_value = FREQ_QOS_MAX_DEFAULT_VALUE;
        c->no_constraint_value = FREQ_QOS_MAX_DEFAULT_VALUE;
        c->type = PM_QOS_MIN;
        c->notifiers = &qos->max_freq_notifiers;
        BLOCKING_INIT_NOTIFIER_HEAD(c->notifiers);
    }

    新分配一个 freq_constraints 结构后可以直接调用此函数,函数中分别对min_freq和max_freq进行初始化,这个函数没有export导出来。

    注意其type的初始化。min_freq 这个限制赋值的type竟然是PM_QOS_MAX,而 max_freq 这个限制赋值的type竟然是PM_QOS_MIN!这样当限制最大频点的时候,pm_qos判断是PM_QOS_MIN,那么plist链表上生效的就是最小值,也就是说对最大频点的限制,谁限制的小谁生效。当限制最小频点的时候,pm_qos判断是PM_QOS_MAX,那么plist链表上生效的就是最大值,也就是说对最小频点的限制,谁限制的大谁生效。这是反着来利用Qos机制的!

    2. freq_qos_add_notifier

    /**
     * freq_qos_add_notifier - Add frequency QoS change notifier.
     * @qos: List of requests to add the notifier to.
     * @type: Request type.
     * @notifier: Notifier block to add.
     */
    int freq_qos_add_notifier(struct freq_constraints *qos, enum freq_qos_req_type type, struct notifier_block *notifier)
    {
        int ret;
    
        if (IS_ERR_OR_NULL(qos) || !notifier)
            return -EINVAL;
    
        switch (type) {
        case FREQ_QOS_MIN:
            ret = blocking_notifier_chain_register(qos->min_freq.notifiers, notifier);
            break;
        case FREQ_QOS_MAX:
            ret = blocking_notifier_chain_register(qos->max_freq.notifiers, notifier);
            break;
        default:
            WARN_ON(1);
            ret = -EINVAL;
        }
    
        return ret;
    }
    EXPORT_SYMBOL_GPL(freq_qos_add_notifier);

    注册一个notifier,根据参数 type,决定使用max的或min的 pm_qos_constraints::notifiers,notifier 参数中有指定优先级,优先级数值大的插入在链表前面,优先级数值小的插入后面,优先级数值若相同,先插入的在前面。notifier->notifier_call()里面会对感感兴趣的action进行响应。

    其中,Qos最终频点限制值改变了,也是通过这个notifier机制更新通知修改的,也就是说cpufreq驱动必须注册两个notifier根据Qos来设置频点值,一个是设置MAX限制,一个是设置MIN限制。

    3. freq_qos_remove_notifier

    /**
     * freq_qos_remove_notifier - Remove frequency QoS change notifier.
     * @qos: List of requests to remove the notifier from.
     * @type: Request type.
     * @notifier: Notifier block to remove.
     */
    int freq_qos_remove_notifier(struct freq_constraints *qos, enum freq_qos_req_type type, struct notifier_block *notifier)
    {
        int ret;
    
        if (IS_ERR_OR_NULL(qos) || !notifier)
            return -EINVAL;
    
        switch (type) {
        case FREQ_QOS_MIN:
            ret = blocking_notifier_chain_unregister(qos->min_freq.notifiers, notifier);
            break;
        case FREQ_QOS_MAX:
            ret = blocking_notifier_chain_unregister(qos->max_freq.notifiers, notifier);
            break;
        default:
            WARN_ON(1);
            ret = -EINVAL;
        }
    
        return ret;
    }
    EXPORT_SYMBOL_GPL(freq_qos_remove_notifier);

    将此 notifier_block 结构从指定的 constraints 的 notifiers 链表上删除。任何对Qos的此限制感兴趣的都需要注册notifier,不再感兴趣时删除。在不需要对频点做要求时需要删除自己的 freq_qos_request 结构,否则它可能持续在生效,导致其它 

    freq_qos_request 表示的频点无法生效。

    4. freq_qos_apply

    /**
     * freq_qos_apply - Add/modify/remove frequency QoS request.
     * @req: Constraint request to apply.
     * @action: Action to perform (add/update/remove).
     * @value: Value to assign to the QoS request.
     *
     * This is only meant to be called from inside pm_qos, not drivers.
     */
    int freq_qos_apply(struct freq_qos_request *req, enum pm_qos_req_action action, s32 value)
    {
        int ret;
    
        switch(req->type) {
        case FREQ_QOS_MIN:
            ret = pm_qos_update_target(&req->qos->min_freq, &req->pnode, action, value);
            break;
        case FREQ_QOS_MAX:
            ret = pm_qos_update_target(&req->qos->max_freq, &req->pnode, action, value);
            break;
        default:
            ret = -EINVAL;
        }
    
        return ret;
    }

    只是在qos.c内部使用,没有导出。

    /**
     * pm_qos_update_target - Update a list of PM QoS constraint requests.
     * @c: List of PM QoS requests.
     * @node: Target list entry.
     * @action: Action to carry out (add, update or remove).
     * @value: New request value for the target list entry.
     *
     * Update the given list of PM QoS constraint requests, @c, by carrying an
     * @action involving the @node list entry and @value on it.
     *
     * The recognized values of @action are PM_QOS_ADD_REQ (store @value in @node
     * and add it to the list), PM_QOS_UPDATE_REQ (remove @node from the list, store
     * @value in it and add it to the list again), and PM_QOS_REMOVE_REQ (remove
     * @node from the list, ignore @value).
     *
     * Return: 1 if the aggregate constraint value has changed, 0  otherwise.
     */
    int pm_qos_update_target(struct pm_qos_constraints *c, struct plist_node *node, enum pm_qos_req_action action, int value)
    {
        int prev_value, curr_value, new_value;
        unsigned long flags;
    
        spin_lock_irqsave(&pm_qos_lock, flags);
    
        prev_value = pm_qos_get_value(c); //根据c->type是MAX还是MIN分别返回最后一个元素和第一个元素的prio的值(请求的值越大,越插入在后面)
        if (value == PM_QOS_DEFAULT_VALUE) //-1就是要设置默认值
            new_value = c->default_value;
        else
            new_value = value;
    
        switch (action) {
        case PM_QOS_REMOVE_REQ:
            plist_del(node, &c->list); //从plist中删除此 freq_qos_request 结构
            break;
        case PM_QOS_UPDATE_REQ:
            /*
             * To change the list, atomically remove, reinit with new value
             * and add, then see if the aggregate has changed.
             */
            plist_del(node, &c->list); //从plist中删除此 freq_qos_request 结构,然后再重新插入
            fallthrough;
        case PM_QOS_ADD_REQ:
            plist_node_init(node, new_value); //node->prio = new_value; 更新value
            plist_add(node, &c->list); //重新插入plist链表,prio(也就是request的value值)越大越插入后面,越小越插入前面
            break;
        default:
            /* no action */
            ;
        }
    
        curr_value = pm_qos_get_value(c);
        pm_qos_set_value(c, curr_value); //c->target_value=value,获取value时返回它
    
        spin_unlock_irqrestore(&pm_qos_lock, flags);
    
        trace_pm_qos_update_target(action, prev_value, curr_value);
    
        if (prev_value == curr_value)
            return 0;
    
        /*最终结果就是发出一个notifier*/
        if (c->notifiers)
            blocking_notifier_call_chain(c->notifiers, curr_value, NULL);
    
        return 1;
    }
    
    static int pm_qos_get_value(struct pm_qos_constraints *c)
    {
        if (plist_head_empty(&c->list))
            return c->no_constraint_value; //empty 就返回 no_constraint_value
    
        switch (c->type) {
        case PM_QOS_MIN:
            return plist_first(&c->list)->prio; //最小就返回第一个元素
    
        case PM_QOS_MAX:
            return plist_last(&c->list)->prio; //最大返回最后一个元素
    
        default:
            WARN(1, "Unknown PM QoS type in %s\n", __func__);
            return PM_QOS_DEFAULT_VALUE;
        }
    }

    注意,在add request时,prio越大(value值越大),越插入靠后,prio值越小,越插入靠前。这里获取PM_QOS_MIN值,返回的是plist链表第一个元素的值,返回的是最小值。获取PM_QOS_MAX值,返回的是plist链表最后一个元素的值,返回的是最大值。

    freq_qos_add_request(&qos, &req, FREQ_QOS_MIN, FREQ_QOS_MAX_DEFAULT_VALUE/*S32_MAX*/) 就表示不限制最大频点了。之后再通过freq_qos_update_request(&req)来更新限制,否则任何其它人设置都无效了,因为这里已经设置了最大值,没有更大的合法值可以去设置了。

    有个trace: trace_pm_qos_update_target,但是没有太大帮助,没有注明是哪个cluster的。

    kthread-270     [004] .... 220691.970715: pm_qos_update_target: action=UPDATE_REQ prev_value=150 curr_value=2000000000
    kthread-270     [004] .... 220691.970846: pm_qos_update_target: action=UPDATE_REQ prev_value=2000000000 curr_value=150

    freq_qos_apply() 函数最终只是判断当前最终体现值 curr_value 和之前最终体现值 prev_value 是否相等,若是相等返回0,不相等就通过 pm_qos_constraints::notifiers 发出一个通知,这里只是一个通知而已。

    5. freq_qos_add_request

    /**
     * freq_qos_add_request - Insert new frequency QoS request into a given list.
     * @qos: Constraints to update.
     * @req: Preallocated request object.
     * @type: Request type.
     * @value: Request value.
     *
     * Insert a new entry into the @qos list of requests, recompute the effective
     * QoS constraint value for that list and initialize the @req object.  The
     * caller needs to save that object for later use in updates and removal.
     *
     * Return 1 if the effective constraint value has changed, 0 if the effective
     * constraint value has not changed, or a negative error code on failures.
     */
    int freq_qos_add_request(struct freq_constraints *qos, struct freq_qos_request *req, enum freq_qos_req_type type, s32 value)
    {
        int ret;
    
        if (IS_ERR_OR_NULL(qos) || !req)
            return -EINVAL;
    
        if (WARN(freq_qos_request_active(req), "%s() called for active request\n", __func__))
            return -EINVAL;
    
        req->qos = qos;
        req->type = type;
        ret = freq_qos_apply(req, PM_QOS_ADD_REQ, value);
        if (ret < 0) {
            req->qos = NULL;
            req->type = 0;
        }
    
        trace_android_vh_freq_qos_add_request(qos, req, type, value, ret);
    
        return ret;
    }
    EXPORT_SYMBOL_GPL(freq_qos_add_request);

    req 是新分配直接使用的。调用结果就是向指定的 pm_qos_constraints::list 链表上插入一个 freq_qos_request 成员,高优先级(数值大,prio=value)的插入在plist后面,低优先级的插入在前面。若是这个 request 值最终使 Qos 的值改变通过notifier发出通知的话,就返回1,否则返回0,失败返回负的错误码。可以看出添加request是实时生效的。

    6. freq_qos_update_request

    /**
     * freq_qos_update_request - Modify existing frequency QoS request.
     * @req: Request to modify.
     * @new_value: New request value.
     *
     * Update an existing frequency QoS request along with the effective constraint
     * value for the list of requests it belongs to.
     *
     * Return 1 if the effective constraint value has changed, 0 if the effective
     * constraint value has not changed, or a negative error code on failures.
     */
    int freq_qos_update_request(struct freq_qos_request *req, s32 new_value)
    {
        if (!req)
            return -EINVAL;
    
        if (WARN(!freq_qos_request_active(req), "%s() called for unknown object\n", __func__))
            return -EINVAL;
    
        trace_android_vh_freq_qos_update_request(req, new_value); mtk_freq_qos_update_request //hook只是一個打印
        if (req->pnode.prio == new_value)
            return 0;
    
        return freq_qos_apply(req, PM_QOS_UPDATE_REQ, new_value);
    }
    EXPORT_SYMBOL_GPL(freq_qos_update_request);

    使用新值替换 pm_qos_constraints::list 上对应 freq_qos_request::pnode::prio 的旧值。若最终Qos值改变了,发出通知并返回1,若最终Qos的值没有变,返回0。

    7. freq_qos_remove_request

    /**
     * freq_qos_remove_request - Remove frequency QoS request from its list.
     * @req: Request to remove.
     *
     * Remove the given frequency QoS request from the list of constraints it
     * belongs to and recompute the effective constraint value for that list.
     *
     * Return 1 if the effective constraint value has changed, 0 if the effective
     * constraint value has not changed, or a negative error code on failures.
     */
    int freq_qos_remove_request(struct freq_qos_request *req)
    {
        int ret;
    
        if (!req)
            return -EINVAL;
    
        if (WARN(!freq_qos_request_active(req), "%s() called for unknown object\n", __func__))
            return -EINVAL;
    
        trace_android_vh_freq_qos_remove_request(req);
        ret = freq_qos_apply(req, PM_QOS_REMOVE_REQ, PM_QOS_DEFAULT_VALUE); //此处参数3基本没用
        req->qos = NULL;
        req->type = 0;
    
        return ret;
    }
    EXPORT_SYMBOL_GPL(freq_qos_remove_request);

    移除 pm_qos_constraints::list 上对应 freq_qos_request ,移除后,若最终Qos值改变了,发出通知并返回1,若最终Qos的值没有变,返回0。

    8. freq_qos_read_value

    /*
     * freq_qos_read_value - Get frequency QoS constraint for a given list.
     * @qos: Constraints to evaluate.
     * @type: QoS request type.
     */
    s32 freq_qos_read_value(struct freq_constraints *qos, enum freq_qos_req_type type)
    {
        s32 ret;
    
        switch (type) {
        case FREQ_QOS_MIN:
            ret = IS_ERR_OR_NULL(qos) ? FREQ_QOS_MIN_DEFAULT_VALUE : pm_qos_read_value(&qos->min_freq);
            break;
        case FREQ_QOS_MAX:
            ret = IS_ERR_OR_NULL(qos) ? FREQ_QOS_MAX_DEFAULT_VALUE : pm_qos_read_value(&qos->max_freq);
            break;
        default:
            WARN_ON(1);
            ret = 0;
        }
    
        return ret;
    }

    此函数没有导出来。返回指定 pm_qos_constraints 的 target_value 值。它是在 pm_qos_update_target() 中更新的。若qos参数传null,就可以得到默认的最大最小值。

    四、逻辑介绍

    1. 调频模块先注册频点设置notifier函数

    static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) //cpufreq.c
    {
        ...
        freq_constraints_init(&policy->constraints);
    
        //实际设置频点的函数
        policy->nb_min.notifier_call = cpufreq_notifier_min;
        policy->nb_max.notifier_call = cpufreq_notifier_max;
        
        freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, &policy->nb_min);
        freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, &policy->nb_max);
        ...
    }
    
    //合二为一,通过work串行执行
    static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, void *data)
    {
        struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
    
        schedule_work(&policy->update); //handle_update
        return 0;
    }
    static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, void *data)
    {
        struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
    
        schedule_work(&policy->update);
        return 0;
    }
    
    static void handle_update(struct work_struct *work)
    {
        struct cpufreq_policy *policy = container_of(work, struct cpufreq_policy, update);
    
        down_write(&policy->rwsem);
        refresh_frequency_limits(policy);
        up_write(&policy->rwsem);
    }
    
    void refresh_frequency_limits(struct cpufreq_policy *policy)
    {
        if (!policy_is_inactive(policy)) { //return cpumask_empty(policy->cpus);
            cpufreq_set_policy(policy, policy->governor, policy->policy);
        }
    }
    
    static int cpufreq_set_policy(struct cpufreq_policy *policy, struct cpufreq_governor *new_gov, unsigned int new_pol)
    {
        ...
        new_data.freq_table = policy->freq_table;
        new_data.cpu = policy->cpu;
    
        //通过Qos获取最大最小频点限制
        new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
        new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
    
        cpufreq_driver->verify(&new_data);
    
        //限制值设置到policy中
        policy->min = new_data.min;
        policy->max = new_data.max;
        trace_cpu_frequency_limits(policy);
    
        if (new_gov == policy->governor) {
            cpufreq_governor_limits(policy); //这里调用到 policy->governor->limits(policy);
            return 0;
        }
        ...
    }
    
    static void sugov_limits(struct cpufreq_policy *policy)
    {
        struct sugov_policy *sg_policy = policy->governor_data;
    
        sg_policy->limits_changed = true; //只是设置了一个标记
    }
    
    
    static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
    {
        s64 delta_ns;
    
        //若设置了限频,就不等达到频点变化延迟了,直接设置频点,新设置的频点会受到新限制的钳位
        if (unlikely(sg_policy->limits_changed)) {
            sg_policy->limits_changed = false;
            sg_policy->need_freq_update = true; //唯一设置位置
            return true;
        }
    
        delta_ns = time - sg_policy->last_freq_update_time;
        return delta_ns >= sg_policy->min_rate_limit_ns;
    }
    
    //调频函数
    static void sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
    {
        if (sugov_should_update_freq(sg_policy, time)) { //判断需要设置才设置
            next_f = sugov_next_freq_shared(sg_cpu, time);
    
            if (sg_policy->policy->fast_switch_enabled)
                sugov_fast_switch(sg_policy, time, next_f); //设置频点
            else
                sugov_deferred_update(sg_policy, time, next_f);
        }
    }
    
    
    static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time, unsigned int next_freq)
    {
        struct cpufreq_policy *policy = sg_policy->policy;
    
        //这里也受 sg_policy->need_freq_update 的值影响
        if (!sugov_update_next_freq(sg_policy, time, next_freq))
            return;
    
        next_freq = cpufreq_driver_fast_switch(policy, next_freq);
        if (!next_freq)
            return;
    
        policy->cur = next_freq;
    
    }
    
    unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq)
    {
        unsigned int freq;
        int cpu;
    
        //尊重Qos的限制值
        target_freq = clamp_val(target_freq, policy->min, policy->max);
        //调用驱动设置频点
        freq = cpufreq_driver->fast_switch(policy, target_freq);
    }

    可以看到,频率限制时对频点的设置其实并不是完全实时的,它只是设置一个标志位而已。然后需要等到有调频调用,即cpufreq_update_util --> sugov_update_shared/sugov_update_single --> 判断有pending的限频导致的设置,就不用等,立即设置。

    2. 其它模块使用 freq_qos_add_request() / freq_qos_update_request() 来限制频点值

    void set_each_cluster_maxfreq_to_2G() {
        struct freq_qos_request req;
        struct cpufreq_policy *policy;
    
        //每个cpu都限制到2GHz
        for_each_possible_cpu(cpu) {
            policy = cpufreq_cpu_get(cpu);
            freq_qos_add_request(&policy->constraints, &req, FREQ_QOS_MAX, 2000000000);
            cpu = cpumask_last(policy->related_cpus);//just cpu0 4 7
            cpufreq_cpu_put(policy);
        }
    }

    五、限制生效流程

    由 Freq Qos 实现可值,当 qos_update 使 Qos 的最终限制结果改变时,会发出notifier,因此需要注册notifier block,并在接收到notifier通知后更新限频值,若当前频点不在新的限制范围内的话,还要设置当前频点。

    //drivers/cpufreq/cpufreq.c
    static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
    {
        struct cpufreq_policy *policy;
        struct device *dev = get_cpu_device(cpu);
    
        ...
        freq_constraints_init(&policy->constraints);
    
        //收到notifier通知后的回调函数
        policy->nb_min.notifier_call = cpufreq_notifier_min;
        policy->nb_max.notifier_call = cpufreq_notifier_max;
    
        //注册 Freq Qos 限频后发出通知的响应函数
        ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, &policy->nb_min);
        ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, &policy->nb_max);
    
        //这个是处理函数,异步的
        INIT_WORK(&policy->update, handle_update);
        ...
    }

    响应回调函数:

    static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, void *data)
    {
        struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
    
        schedule_work(&policy->update);
        return 0;
    }
    
    static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, void *data)
    {
        struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
    
        schedule_work(&policy->update);
        return 0;
    }
    
    static inline bool schedule_work(struct work_struct *work)
    {
        return queue_work(system_wq, work); //就会调用到 handle_update() 
    }

    异步执行策略变更设置:

    static void handle_update(struct work_struct *work)
    {
        struct cpufreq_policy *policy = container_of(work, struct cpufreq_policy, update);
    
        pr_debug("handle_update for cpu %u called\n", policy->cpu);
        down_write(&policy->rwsem);
        refresh_frequency_limits(policy);
        up_write(&policy->rwsem);
    }
    
    
    void refresh_frequency_limits(struct cpufreq_policy *policy)
    {
        if (!policy_is_inactive(policy)) {
            pr_debug("updating policy for CPU %u\n", policy->cpu);
    
            cpufreq_set_policy(policy, policy->governor, policy->policy);
        }
    }
    EXPORT_SYMBOL(refresh_frequency_limits);

    实际上是调用 cpufreq_set_policy() 来使限频策略更新的。

    static int cpufreq_set_policy(struct cpufreq_policy *policy, struct cpufreq_governor *new_gov, unsigned int new_pol)
    {
        struct cpufreq_policy_data new_data;
    
        memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
        new_data.freq_table = policy->freq_table;
        new_data.cpu = policy->cpu;
    
    
        //从Freq QoS 中读取min和max值
        new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
        new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
    
        //验证一下,确保min <= max.
        ret = cpufreq_driver->verify(&new_data);
    
        //policy的min和max成员保存的是生效的最大频点和最小频点的限制值
        policy->min = new_data.min;
        policy->max = new_data.max;
    
        //这里有个trace在限频策略生效时打印
        trace_cpu_frequency_limits(policy);
    
        policy->cached_target_freq = UINT_MAX;
    
        pr_debug("new min and max freqs are %u - %u kHz\n", policy->min, policy->max);
    
        //cpufreq_driver若是有setpolicy回调则调用,但是通常driver不会定义这个回调
        if (cpufreq_driver->setpolicy) {
            policy->policy = new_pol;
            pr_debug("setting range\n");
            return cpufreq_driver->setpolicy(policy);
        }
    
        //相同govrnor的限频走这里
        if (new_gov == policy->governor) {
            pr_debug("governor limits update\n");
            cpufreq_governor_limits(policy); //相同governor走这里
            return 0;
        }
    
        ...
    }

    上面从Freq Qos获取的最大最小频点限制已经保存到 policy->min 和 policy->max 中了,限制的任务已经完成,之后的频点设置都会和policy的min和max比较,将频点钳位到min和max之间。之后就是实时的使限制值生效了,这是通过调用governor->limits()回调函数来完成的。

    static void cpufreq_governor_limits(struct cpufreq_policy *policy)
    {
        //调用governor的limit回调来设置频点
        if (policy->governor->limits)
            policy->governor->limits(policy);
    }
    
    
    static void sugov_limits(struct cpufreq_policy *policy)
    {
        struct sugov_policy *sg_policy = policy->governor_data;
    
        if (!policy->fast_switch_enabled) {
            mutex_lock(&sg_policy->work_lock);
            cpufreq_policy_apply_limits(policy);
            mutex_unlock(&sg_policy->work_lock);
        }
    
        sg_policy->limits_changed = true;
    }
    
    static inline void cpufreq_policy_apply_limits(struct cpufreq_policy *policy)
    {
        //只有在当前频点不在限制范围内才会设置
        if (policy->max < policy->cur)
            __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
        else if (policy->min > policy->cur)
            __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
    }

    这里判断了 policy->fast_switch_enabled 的值,若是为false就会调用下面函数直接设置频点。若是为true则不会立即设置,而是延后到下一次频点变更的时候进行设置,在 sugov_update_shared/sugov_update_single 中判断 sg_policy->limits_changed 为真时会立即更新频点,忽视up/down_rate_limit_us文件设置的值。

    六、实验

    1. 实验代码

    /* 放到 kernel/sched 下面 */
    
    #define pr_fmt(fmt) "freq_qos_debug: " fmt
    
    #include <linux/fs.h>
    #include <linux/sched.h>
    #include <linux/proc_fs.h>
    #include <linux/seq_file.h>
    #include <linux/string.h>
    #include <linux/printk.h>
    #include <asm/topology.h>
    #include <linux/cpumask.h>
    #include <linux/cpufreq.h>
    #include <linux/pm_qos.h>
    #include <linux/plist.h>
    #include <linux/sched/topology.h>
    #include "sched.h"
    
    
    static struct freq_qos_request qos_req[2][3];
    
    static int freq_qos_debug_show(struct seq_file *m, void *v)
    {
        int cpu = 4;
        struct freq_qos_request    *pos;
        struct cpufreq_policy *policy;
        struct plist_head *plh_max, *plh_min;
    
        for_each_possible_cpu(cpu) {
            policy = cpufreq_cpu_get(cpu);
            if (!policy) {
                pr_info("cpufreq_cpu_get return null!\n");
                return -EFAULT;
            }
            seq_printf(m, "policy->max=%u, policy->min=%u, policy->cur=%u\n", policy->max, policy->min, policy->cur);
    
            plh_max = &policy->constraints.max_freq.list;
            seq_printf(m, "max freq limit:\n");
            plist_for_each_entry(pos, plh_max, pnode) {
                seq_printf(m, "pos->type=%d, pos->pnode.prio=%d\n", pos->type, pos->pnode.prio);
            }
    
            plh_min = &policy->constraints.min_freq.list;
            seq_printf(m, "min freq limit:\n");
            plist_for_each_entry(pos, plh_min, pnode) {
                seq_printf(m, "pos->type=%d, pos->pnode.prio=%d\n", pos->type, pos->pnode.prio);
            }
            seq_printf(m, "\n");
    
            cpu = cpumask_last(policy->related_cpus);
            cpufreq_cpu_put(policy);
        }
    
        return 0;
    }
    
    static int freq_qos_debug_open(struct inode *inode, struct file *file)
    {
        return single_open(file, freq_qos_debug_show, NULL);
    }
    
    static int freq_qos_debug_update_request(int cluster, int freq_req, int choose)
    {
        int ret = freq_qos_update_request(&qos_req[choose][cluster], freq_req);
        if (ret == 1) {
            pr_info("new freq_req=%u take effect.\n", freq_req);
        } else if (ret == 0) {
            pr_info("new freq_req=%u not take effect.\n", freq_req);
        } else if (ret < 0) {
            pr_err("new freq_req=%u update failed.\n", freq_req);
        }
    
        return ret;
    }
    
    static ssize_t freq_qos_debug_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
    {
    
        int ret;
        int cluster, min_max, freq_req;
        char buffer[64] = {0};
    
        if (count >= sizeof(buffer)) {
            count = sizeof(buffer) - 1;
        }
        if (copy_from_user(buffer, buf, count)) {
            pr_info("copy_from_user failed\n");
            return -EFAULT;
        }
        ret = sscanf(buffer, "%d %d %d", &cluster, &min_max, &freq_req);
        if(ret != 3){
            pr_info("sscanf failed, ret=%d\n", ret);
            return -EINVAL;
        }
        if ((cluster < 0 || cluster > 2) || (min_max != 0 && min_max != 1)) {
            pr_info("cmd error: cluster=%d, freq=%d, choose=%d\n", cluster, freq_req, min_max);
        }
        pr_info("set: cluster=%d, freq=%d, choose=%s\n", cluster, freq_req, min_max==1 ? "max":"min");
    
        freq_qos_debug_update_request(cluster, freq_req, min_max);
    
        return count;
    }
    
    //Linux5.10 change file_operations to proc_ops
    static const struct proc_ops freq_qos_debug_fops = {
        .proc_open    = freq_qos_debug_open,
        .proc_read    = seq_read,
        .proc_write   = freq_qos_debug_write,
        .proc_lseek  = seq_lseek,
        .proc_release = single_release,
    };
    
    static int freq_qos_debug_add_request(void)
    {
        struct cpufreq_policy *policy;
        int ret, cpu;
        int i = 0;
    
        for_each_possible_cpu(cpu) {
            policy = cpufreq_cpu_get(cpu);
            if (!policy) {
                pr_info("cpufreq_cpu_get return null\n");
                return -EFAULT;
            }
    
            ret = freq_qos_add_request(&policy->constraints, &qos_req[1][i], FREQ_QOS_MAX, FREQ_QOS_MAX_DEFAULT_VALUE);
            if (ret < 0) {
                pr_err("add qos request max failed. cpu=%d\n", cpu);
                return -EFAULT;
            }
            ret = freq_qos_add_request(&policy->constraints, &qos_req[0][i], FREQ_QOS_MIN, FREQ_QOS_MIN_DEFAULT_VALUE);
            if (ret < 0) {
                pr_err("add qos request min failed. cpu=%d\n", cpu);
                return -EFAULT;
            }
    
            cpu = cpumask_last(policy->related_cpus);
            cpufreq_cpu_put(policy);
    
            i++;
        }
    
        return ret;
    }
    
    
    static int __init freq_qos_debug_init(void)
    {
        proc_create("freq_qos_debug", S_IRUGO | S_IWUGO, NULL, &freq_qos_debug_fops);
    
        freq_qos_debug_add_request();
    
        pr_info("freq_qos_debug probed\n");
    
        /*
         * 若不编译成ko,编译进内核,打印的是 MODULE not defined!
         * 若编译成ko,打印的是 MODULE defined!
         */
    #ifdef MODULE
        pr_info("MODULE defined!\n");
    #else
        pr_info("MODULE not defined!\n");
    #endif
    
        return 0;
    }
    //若不编译成模块,改成 late_initcall 仍然会打印 cpufreq_cpu_get return null
    late_initcall(freq_qos_debug_init);
    
    MODULE_DESCRIPTION("Freq Qos Debug");
    MODULE_LICENSE("GPL v2"); //必须得有

    补充:若编译成ko, MODULE宏就是定义的,此时各种 XXX_initcall(fn) 都为 module_init(fn),是不考虑插入优先级的,见include/linux/module.h。若编译进内核,则MODULE宏是没有定义的,是考虑优先级的,XXX_initcall(fn)分别对应各自的优先级,见include/linux/init.h。也比较容易理解,比如一个模块编译成了ko,那么它就是在insmod时单独加载的,指定优先级也没有意义。

    2. 实验结果

    # cat /proc/freq_qos_debug
    policy->max=1100000, policy->min=500000, policy->cur=500000
    max freq limit:
    pos->type=2, pos->pnode.prio=1100000
    pos->type=2, pos->pnode.prio=1800000
    pos->type=2, pos->pnode.prio=2147483647
    min freq limit:
    pos->type=1, pos->pnode.prio=0
    pos->type=1, pos->pnode.prio=200000
    pos->type=1, pos->pnode.prio=500000
    
    policy->max=1800000, policy->min=200000, policy->cur=1400000
    max freq limit:
    pos->type=2, pos->pnode.prio=1800000
    pos->type=2, pos->pnode.prio=2850000
    pos->type=2, pos->pnode.prio=2147483647
    min freq limit:
    pos->type=1, pos->pnode.prio=0
    pos->type=1, pos->pnode.prio=200000
    
    policy->max=2300000, policy->min=1300000, policy->cur=1300000
    max freq limit:
    pos->type=2, pos->pnode.prio=2300000
    pos->type=2, pos->pnode.prio=3050000
    pos->type=2, pos->pnode.prio=2147483647
    min freq limit:
    pos->type=1, pos->pnode.prio=0
    pos->type=1, pos->pnode.prio=1300000

    3. 实验总结

    通过设置实验可以看出,max选最小的,min选最大的,实验和理论对的上。/sys/devices/system/cpu/cpuX/cpufreq 下的 scaling_min_freq 文件,写它是 freq_qos_update_request() 一个对最小频点的限制值,cat它显示的是policy->min.

    通过echo设置可以发现,若是设置并生效的min的限制值比当前max得限制值还大,min取max的值,相当于定频了,可以叫它向下定频。若设置并生效的max限制值比当前的min得限制值还小,此时max和min的频点都取设置并生效的max值,也相当于将频点定到设置的max值上,可以叫它向下定频。也可以理解为冲突后以对max的设定为准

    注:prio值越大越插入后面是正确的,通过移植plist链表验证过了。

  • 相关阅读:
    activiti基本使用
    mybatisplus分页查询
    MyBatisPlus入门案例
    mybatisplus性能分析插件
    Oracle简单应用
    mybatisplus自动填充
    mybatisplus之主键生成策略
    mybatisplus乐观锁
    复习MintUI
    React的第二种使用方法----脚手架方式
  • 原文地址:https://www.cnblogs.com/hellokitty2/p/15685048.html
Copyright © 2020-2023  润新知