• TensorFlow深度学习笔记 文本与序列的深度模型


    Deep Models for Text and Sequence

    转载请注明作者:梦里风林
    Github工程地址:https://github.com/ahangchen/GDLnotes
    欢迎star,有问题可以到Issue区讨论
    官方教程地址
    视频/字幕下载

    Rare Event

    与其他机器学习不同,在文本分析里,陌生的东西(rare event)往往是最重要的,而最常见的东西往往是最不重要的。

    语法多义性

    • 一个东西可能有多个名字,对这种related文本能够做参数共享是最好的
    • 需要识别单词,还要识别其关系,就需要过量label数据

    无监督学习

    • 不用label进行训练,训练文本是非常多的,关键是要找到训练的内容
    • 遵循这样一个思想:相似的词汇出现在相似的场景中
    • 不需要知道一个词真实的含义,词的含义由它所处的历史环境决定

    Embeddings

    • 将单词映射到一个向量(Word2Vec),越相似的单词的向量会越接近
    • 新的词可以由语境得到共享参数

    Word2Vec

    • 将每个词映射到一个Vector列表(就是一个Embeddings)里,一开始随机,用这个Embedding进行预测
    • Context即Vector列表里的邻居
    • 目标是让Window里相近的词放在相邻的位置,即预测一个词的邻居
    • 用来预测这些相邻位置单词的模型只是一个Logistics Regression, just a simple Linear model

    Comparing embeddings

    • 比较两个vector之间的夹角大小来判断接近程度,用cos值而非L2计算,因为vector的长度和分类是不相关的:

    • 最好将要计算的vector都归一化

    Predict Words

    • 单词经过embedding变成一个vector
    • 然后输入一个WX+b,做一个线性模型
    • 输出的label概率为输入文本中的词汇
    • 问题在于WX+b输出时,label太多了,计算这种softmax很低效
    • 解决方法是,筛掉不可能是目标的label,只计算某个label在某个局部的概率,sample softmax

    t-SNE

    • 查看某个词在embedding里的最近邻居可以看到单词间的语义接近关系
    • 将vector构成的空间降维,可以更高效地查找最近单词,但降维过程中要保持邻居关系(原来接近的降维后还要接近)
    • t-SNE就是这样一种有效的方法

    类比

    • 实际上我们能得到的不仅是单词的邻接关系,由于将单词向量化,可以对单词进行计算
    • 可以通过计算进行语义加减,语法加减

    Sequence

    文本(Text)是单词(word)的序列,一个关键特点是长度可变,就不能直接变为vector

    CNN and RNN

    CNN 在空间上共享参数,RNN在时间上(顺序上)共享参数

    • 在每轮训练中,需要判断至今为之发生了什么,过去输入的所有数据都对当下的分类造成影响
    • 一种思路是记忆之前的分类器的状态,在这个基础上训练新的分类器,从而结合历史影响
    • 这样需要大量历史分类器
    • 重用分类器,只用一个分类器总结状态,其他分类器接受对应时间的训练,然后传递状态

    RNN Derivatives

    • BackPropagation Through time
    • 对同一个weight参数,会有许多求导操作同时更新之
    • 对SGD不友好,因为SGD是用许多不相关的求导更新参数,以保证训练的稳定性
    • 由于梯度之间的相关性,导致梯度爆炸或者梯度消失

    • 使得训练时找不到优化方向,训练失败

    Clip Gradient

    计算到梯度爆炸的时候,使用一个比值来代替△W(梯度是回流计算的,横坐标从右往左看)

    • Hack but cheap and effective

    LSTM(Long Short-Term Memory)

    梯度消失会导致分类器只对最近的消息的变化有反应,淡化以前训练的参数,也不能用比值的方法来解决

    • 一个RNN的model包含两个输入,一个是过去状态,一个是新的数据,两个输出,一个是预测,一个是将来状态

    • 中间是一个简单的神经网络
    • 将中间的部分换成LSTM-cell就能解决梯度消失问题
    • 我们的目的是提高RNN的记忆能力
    • Memory Cell

    三个门,决定是否写/读/遗忘/写回

    • 在每个门上,不单纯做yes/no的判断,而是使用一个权重,决定对输入的接收程度
    • 这个权重是一个连续的函数,可以求导,也就可以进行训练,这是LSTM的核心

    • 用一个逻辑回归训练这些门,在输出进行归一化

    • 这样的模型能让整个cell更好地记忆与遗忘
    • 由于整个模型都是线性的,所以可以方便地求导和训练

    LSTM Regularization

    • L2, works
    • Dropout on the input or output of data, works

    有了上面的模型之后,我们可以根据上文来推测下文,甚至创造下文,预测,筛选最大概率的词,喂回,继续预测……

    • 我们可以每次只预测一个字母,but this is greedy,每次都挑最好的那个
    • 也可以每次多预测几步,然后挑整体概率较高的那个,以减少偶然因素的影响
    • 但这样需要生成的sequence会指数增长
    • 因此我们在多预测几步的时候,只为概率比较高的几个候选项做预测,that's beam search.

    翻译与识图

    • RNN将variable length sequence问题变成了fixed length vector问题,同时因为实际上我们能利用vector进行预测,我们也可以将vector变成sequence

    • 我们可以利用这一点,输入一个序列,到一个RNN里,将输出输入到另一个逆RNN序列,形成另一种序列,比如,语言翻译

    • 如果我们将CNN的输出接到一个RNN,就可以做一种识图系统

    循环神经网络实践

    觉得我的文章对您有帮助的话,给个star可好?

  • 相关阅读:
    Mybatis(二) Mybatis通用的写法
    Mybatis(一)Mybatis相关概念
    NodeJS添加Jquery依赖
    安卓、IOS端AEC密钥加密 Java端密钥解密通用实现(16进制表现形式)
    关于博客园首页及详情页美化的代码
    MD5用户密码加密工具类 MD5Util
    .Net Core跨平台应用研究-CustomSerialPort(增强型跨平台串口类库)
    FtpServer穿透内网访问配置踩坑笔记
    .Net Core之编辑json配置文件
    玩转MQTT-阿里云之MQTT使用(下)
  • 原文地址:https://www.cnblogs.com/hellocwh/p/5623179.html
Copyright © 2020-2023  润新知