• poj 2488 A Knight's Journey 【dfs】【字典序】【刷题计划】


    A Knight's Journey
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 47516   Accepted: 16161

    Description

    Background 
    The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey 
    around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans? 

    Problem 
    Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

    Input

    The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

    Output

    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. 
    If no such path exist, you should output impossible on a single line.

    Sample Input

    3
    1 1
    2 3
    4 3

    Sample Output

    Scenario #1:
    A1
    
    Scenario #2:
    impossible
    
    Scenario #3:
    A1B3C1A2B4C2A3B1C3A4B2C4

    题意:在一个n*m的国际棋盘上,象棋以马走日的方式走,行数为1-n的数字,列数为A-A+m的字母,按照字典序输出一条合适的路径。

    思路:先构造一个棋盘数组和一个标记数组,按照字典序的方式就是先走字典序优先的位置,所以在定义方向数组的时候需要留意方位顺序,最后,每个样例后都一个空行。

    喵?喵?喵?这道题的字典序操作真是毁我青春,我一直以为字典序就是先按照字母表顺序输出一遍再从头开始,然后就躺尸在这道题上,今天师父一看我屏幕,感叹这种水题居然还没有写过(毕竟上个周我就缠着师父给我讲为啥错了),最后师父才发现,原来我徒弟连字典序都不会(呜呜呜,谁知道是这样的字典序啊,样例误导人~),师父讲完字典序以后我就A过啦~

    #include<stdio.h>
    #include<string.h>
    #define N 100
    int map[N][N],m,n,flag;
    char str[N][N];
    struct node1{
        int x;
        char y;
    }l[N*N];
    
    struct node2{
        int x;
        char y;
    }f[N*N];
    
    void dfs(int x,int y,int step)
    {
        int k[8][2] = {-1,-2,1,-2,-2,-1,2,-1,-2,1,2,1,-1,2,1,2};
        int nx,ny,i;
        if(step > n*m)//在找到合适路径的情况下 
        {
            flag = 1;
            for(i = 1; i <= n*m; i ++)
            {
                f[i].x = l[i].x ;//将临时数组的值存入最终数组 
                f[i].y = l[i].y ;
            }
            return;
        }
        else
        {
            for(i = 0; i < 8; i ++)
            {
                if(!flag)//在未找到合适路径的情况下 
                {
                    nx = x + k[i][0]; 
                    ny = y + k[i][1];
                    if(nx < 1||ny < 1||nx > n||ny > m||map[nx][ny] == 1)
                        continue;
                    map[nx][ny] = 1;//标记为已经访问过 
                    l[step].x = nx;//用临时数组存储下标 
                    l[step].y = str[nx][ny];
                    dfs(nx,ny,step +1);//往下搜索 
                    map[nx][ny] = 0;//回溯 
                }
                
            }
        }
    }
    int main()
    {
        int i,j;
        int t,t2=0;
        scanf("%d",&t);
        while(t --)
        {
            scanf("%d%d",&n,&m);
            flag = 0;
            memset(map,0,sizeof(map));//
            memset(l,0,sizeof(l));//
            memset(f,0,sizeof(f));//初始化 
            for(i = 1; i <= n; i ++)
            {
                char ch = 'A';
                for(j = 1; j <= m; j ++)
                    str[i][j] = ch ++;
            }
            l[1].x = 1;
            l[1].y = 'A';
            map[1][1] = 1;//将初识下标初始化为访问过 
            dfs(1,1,2);
            printf("Scenario #%d:
    ",++t2);
            if(!flag)
                printf("impossible
    
    ");
            else
            {
                for(i = 1; i <= n*m; i ++)
                    printf("%c%d",f[i].y ,f[i].x );
                printf("
    
    ");
            }
        }
        return 0;
    }
  • 相关阅读:
    BZOJ3000 斯特林公式
    组合数学一些结论
    CSP2019-JS 游记(总结)
    Atcoder AGC1~10 problem list
    ioi2015hw
    NOI2017解题报告
    HNOI2021游记
    4月做题记录
    WC2021题解
    P4592 [TJOI2018]异或
  • 原文地址:https://www.cnblogs.com/hellocheng/p/7903603.html
Copyright © 2020-2023  润新知