关键在于思路, 需要两个输入向量,而函数中需要一个辅助栈!
思路:以待判出栈序列为基础,逐个判断它与栈顶元素是否相等,相等则弹出且j++,这表明此元素可为出栈顺序元素,不相等则栈元素不断入栈,直至相等,否则则判为非出栈序列!
#include<stack> bool IsStackSquence(int* array1, int length1, int* array2, int length2) { bool IsOutStack = true; if(array1 == NULL || length1 <= 0 || array2 == NULL || length2 <= 0 || length1 != length2) return !IsOutStack; std::stack<int> st; int i = 0; int j = 0; st.push(array1[i++]); while(j < length2) { while(array2[j] != st.top() && i < length1) { st.push(array1[i]); i++; } if(array2[j] != st.top() && i == length1) return !IsOutStack; st.pop(); j++; } return IsOutStack; }
参考代码:
#include <stack> bool IsPopOrder(const int* pPush, const int* pPop, int nLength) { bool bPossible = false; if(pPush != NULL && pPop != NULL && nLength > 0) { const int* pNextPush = pPush; const int* pNextPop = pPop; std::stack<int> stackData; while(pNextPop - pPop < nLength) { // 当辅助栈的栈顶元素不是要弹出的元素 // 先压入一些数字入栈 while(stackData.empty() || stackData.top() != *pNextPop) { // 如果所有数字都压入辅助栈了,退出循环 if(pNextPush - pPush == nLength) break; stackData.push(*pNextPush); pNextPush ++; } if(stackData.top() != *pNextPop) break; stackData.pop(); pNextPop ++; } if(stackData.empty() && pNextPop - pPop == nLength) bPossible = true; } return bPossible; }
学习:const int*