题目大意:
一个无向图上,没有自环,所有边的权值均为1,对于一个点对(a,b),我们要把所有a与b之间所有最短路上的点的总个数输出。
思路:
两遍floyed。
第一遍求出所有点之间的最短路,第二遍枚举每一个点,如果a[i][j]==a[i][k]+a[k][j],那么k点就是最短路径上的一点
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int a[101][101],b[101][101],x,y,m,n;
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
a[i][j]=99999999; //初始化
for (int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=1;
}
for (int k=1;k<=n;k++)
for (int j=1;j<=n;j++)
for (int i=1;i<=n;i++) //第一遍floyed,求出最短路径
if (i!=j&&j!=k&&k!=i) a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) //第二遍floyed
if (a[i][k]+a[k][j]==a[i][j]) b[i][j]++; //判断点k是否是i与j之间最短路的一点
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
printf("%d\n",b[x][y]+2); //+2是因为要加上起始点和终点
}
return 0;
}