• 『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断


    一、detect和build

    前面多节中我们花了大量笔墨介绍build方法的inference分支,这节我们看看它是如何被调用的。

    dimo.ipynb中,涉及model的操作我们简单进行一下汇总,首先创建图并载入预训练权重,

    然后规范了类别序列,

    实际开始检测的代码块如下,

    经由model.detect方法,调用model.build方法(也就是我们前面多节在讲解的方法)构建图,实施预测。

    二、detect方法

    首先看看detect方法的前几行(和build一样,同见model.py),

        def detect(self, images, verbose=0):
            """Runs the detection pipeline.
    
            images: List of images, potentially of different sizes.
    
            Returns a list of dicts, one dict per image. The dict contains:
            rois: [N, (y1, x1, y2, x2)] detection bounding boxes
            class_ids: [N] int class IDs
            scores: [N] float probability scores for the class IDs
            masks: [H, W, N] instance binary masks
            """
            assert self.mode == "inference", "Create model in inference mode."
            assert len(
                images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE"
    
            # 日志记录
            if verbose:
                log("Processing {} images".format(len(images)))
                for image in images:
                    log("image", image)
    

    1、待检测图像预处理

            # Mold inputs to format expected by the neural network
            molded_images, image_metas, windows = self.mold_inputs(images)
    
            # Validate image sizes
            # All images in a batch MUST be of the same size
            image_shape = molded_images[0].shape
            for g in molded_images[1:]:
                assert g.shape == image_shape,
                    "After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes."
    

    简单的纠错和日志控制之后,即调用mold_input函数对输入图片进行调整,并记录图片信息

    self.mold_inputs方法如下,

        def mold_inputs(self, images):
            """Takes a list of images and modifies them to the format expected
            as an input to the neural network.
            images: List of image matrices [height,width,depth]. Images can have
                different sizes.
    
            Returns 3 Numpy matrices:
            molded_images: [N, h, w, 3]. Images resized and normalized.
            image_metas: [N, length of meta data]. Details about each image.
            windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the
                original image (padding excluded).
            """
            molded_images = []
            image_metas = []
            windows = []
            for image in images:
                # Resize image
                # TODO: move resizing to mold_image()
                molded_image, window, scale, padding, crop = utils.resize_image(
                    image,
                    min_dim=self.config.IMAGE_MIN_DIM,      # 800
                    min_scale=self.config.IMAGE_MIN_SCALE,  # 0
                    max_dim=self.config.IMAGE_MAX_DIM,      # 1024
                    mode=self.config.IMAGE_RESIZE_MODE)     # square
                molded_image = mold_image(molded_image, self.config)  # 减平均像素
                # Build image_meta 形式为np数组
                image_meta = compose_image_meta(
                    0, image.shape, molded_image.shape, window, scale,
                    np.zeros([self.config.NUM_CLASSES], dtype=np.int32))
                # Append
                molded_images.append(molded_image)
                windows.append(window)
                image_metas.append(image_meta)
            # Pack into arrays
            molded_images = np.stack(molded_images)
            image_metas = np.stack(image_metas)
            windows = np.stack(windows)
            return molded_images, image_metas, windows
    

    utils.resize_image函数用于缩放原图像,它生成一个scale,返回图像大小等于输入图像大小*scale并保证

    1. 最短边等于输入min_dim,最长边不大于max_dim
    2. 如果最长边超过了max_dim则保证最长边等于max_dim,最短边不再限制

    最后,将图片padding到max_dim*max_dim大小(即molded_images大小其实是固定的),其返回值如下:

    image.astype(image_dtype), window, scale, padding, crop
    

    表示:resize后图片,原图相对resize后图片的位置信息(详见『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼),放缩倍数,padding信息(四个整数),crop信息(四个整数或者None)。

    mold_image函数更为简单,就是把图片像素减去了个平均值,MEAN_PIXEL=[123.7 116.8 103.9]。

    compose_image_meta记录了全部的原始信息,可以看到,crop并未收录在内,

    def compose_image_meta(image_id, original_image_shape, image_shape,
                           window, scale, active_class_ids):
        """Takes attributes of an image and puts them in one 1D array.
    
        image_id: An int ID of the image. Useful for debugging.
        original_image_shape: [H, W, C] before resizing or padding.
        image_shape: [H, W, C] after resizing and padding
        window: (y1, x1, y2, x2) in pixels. The area of the image where the real
                image is (excluding the padding)
        scale: The scaling factor applied to the original image (float32)
        active_class_ids: List of class_ids available in the dataset from which
            the image came. Useful if training on images from multiple datasets
            where not all classes are present in all datasets.
        """
        meta = np.array(
            [image_id] +                  # size=1
            list(original_image_shape) +  # size=3
            list(image_shape) +           # size=3
            list(window) +                # size=4 (y1, x1, y2, x2) in image cooredinates
            [scale] +                     # size=1
            list(active_class_ids)        # size=num_classes
        )
        return meta
    

    最后拼接返回。

    2、anchors生成

    首先调用方法get_anchors生成锚框(见『计算机视觉』Mask-RCNN_锚框生成),shape为[anchor_count, (y1, x1, y2, x2)],

            # Anchors
            anchors = self.get_anchors(image_shape)
            # Duplicate across the batch dimension because Keras requires it
            # TODO: can this be optimized to avoid duplicating the anchors?
            # [anchor_count, (y1, x1, y2, x2)] --> [batch, anchor_count, (y1, x1, y2, x2)]
            anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape)
    

    然后为之添加batch维度,最终[batch, anchor_count, (y1, x1, y2, x2)]。

    3、inference网络预测

    调用keras的predict方法前向传播,在预测任务中我们仅仅关注detections和mrcnn_mask两个输出。

            # Run object detection
            # 于__init__中定义:self.keras_model = self.build(mode=mode, config=config)
            # 返回list:    [detections, mrcnn_class, mrcnn_bbox,
            #               mrcnn_mask, rpn_rois, rpn_class, rpn_bbox]
            # detections,  [batch, num_detections, (y1, x1, y2, x2, class_id, score)]
            # mrcnn_mask,  [batch, num_detections, MASK_POOL_SIZE, MASK_POOL_SIZE, NUM_CLASSES]
            detections, _, _, mrcnn_mask, _, _, _ =
                self.keras_model.predict([molded_images, image_metas, anchors], verbose=0)
    

    4、坐标框重映射

    我们对于坐标的操作都是基于输入图片的相对位置,且单位长度也是其宽高,在最后我们需要将之修正回像素空间坐标。

    令输入图片list不需要输入图片具有相同的尺寸,所以我们在恢复时必须注意单张处理之。

            # Process detections
            results = []
            for i, image in enumerate(images):
                # 需要单张处理,因为原始图片images不保证每张尺寸一致
                final_rois, final_class_ids, final_scores, final_masks =
                    self.unmold_detections(detections[i], mrcnn_mask[i],
                                           image.shape, molded_images[i].shape,
                                           windows[i])
    

    目标检测框重映射:unmold_detections函数

        def unmold_detections(self, detections, mrcnn_mask, original_image_shape,
                              image_shape, window):
            """Reformats the detections of one image from the format of the neural
            network output to a format suitable for use in the rest of the
            application.
    
            detections: [N, (y1, x1, y2, x2, class_id, score)] in normalized coordinates
            mrcnn_mask: [N, height, width, num_classes]
            original_image_shape: [H, W, C] Original image shape before resizing
            image_shape: [H, W, C] Shape of the image after resizing and padding
            window: [y1, x1, y2, x2] Pixel coordinates of box in the image where the real
                    image is excluding the padding.
    
            Returns:
            boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels
            class_ids: [N] Integer class IDs for each bounding box
            scores: [N] Float probability scores of the class_id
            masks: [height, width, num_instances] Instance masks
            """
            # How many detections do we have?
            # Detections array is padded with zeros. Find the first class_id == 0.
            zero_ix = np.where(detections[:, 4] == 0)[0]  # DetectionLayer 末尾对结果进行了全0填充
            N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0]  # 有意义的检测结果数N
    
            # Extract boxes, class_ids, scores, and class-specific masks
            boxes = detections[:N, :4]                         # [N, (y1, x1, y2, x2)]
            class_ids = detections[:N, 4].astype(np.int32)     # [N, class_id]
            scores = detections[:N, 5]                         # [N, score]
            masks = mrcnn_mask[np.arange(N), :, :, class_ids]  # [N, height, width, num_classes]
    
            # Translate normalized coordinates in the resized image to pixel
            # coordinates in the original image before resizing
            window = utils.norm_boxes(window, image_shape[:2])  # window相对输入图片规范化
    
            wy1, wx1, wy2, wx2 = window
            shift = np.array([wy1, wx1, wy1, wx1])
            wh = wy2 - wy1  # window height
            ww = wx2 - wx1  # window width
            scale = np.array([wh, ww, wh, ww])
            # Convert boxes to normalized coordinates on the window
            boxes = np.divide(boxes - shift, scale)  # box相对window坐标规范化
            # Convert boxes to pixel coordinates on the original image
            boxes = utils.denorm_boxes(boxes, original_image_shape[:2])  # box相对原图解规范化
    
            # Filter out detections with zero area. Happens in early training when
            # network weights are still random
            exclude_ix = np.where(
                (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0]
            if exclude_ix.shape[0] > 0:
                boxes = np.delete(boxes, exclude_ix, axis=0)
                class_ids = np.delete(class_ids, exclude_ix, axis=0)
                scores = np.delete(scores, exclude_ix, axis=0)
                masks = np.delete(masks, exclude_ix, axis=0)
                N = class_ids.shape[0]
    
            # Resize masks to original image size and set boundary threshold.
            full_masks = []
            for i in range(N):  # 单个box操作
                # Convert neural network mask to full size mask
                full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape)
                full_masks.append(full_mask)
            full_masks = np.stack(full_masks, axis=-1)
                if full_masks else np.empty(original_image_shape[:2] + (0,))
    
            # [n, (y1, x1, y2, x2)]
            # [n, class_id]
            # [n, class_id]
            # [h, w, n]
            return boxes, class_ids, scores, full_masks
    

     为了将输出结果格式还原,我们需要进行如下几步:

    剔除为了凑齐DETECTION_MAX_INSTANCES 填充的全0检测结果

    将box放缩回原始图片对应尺寸

    剔除面积为0的box

    mask输出尺寸还原

    在网络中操作的box尺寸为基于输入图片的规范化坐标,window为像素坐标,所以我们先将window相对输入图片规范化,使得window和box处于同一坐标系,然后这两者坐标就可以直接交互了,使box相对window规范化,此时box坐标尺寸都是window的相对值,而window和原始图片是直接有映射关系的,所以box遵循其关系,映射回原始像素大小即可。

    完成box映射后,我们开始对mask进行处理。

    Mask信息重映射:utils.unmold_mask函数

    utils.unmold_mask受调用于unmold_detections尾部:

            # Resize masks to original image size and set boundary threshold.
            full_masks = []
            for i in range(N):  # 单个box操作
                # Convert neural network mask to full size mask
                full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape)
                full_masks.append(full_mask)
            full_masks = np.stack(full_masks, axis=-1)
                if full_masks else np.empty(original_image_shape[:2] + (0,))
    

    首先重申我们的unmold_detections函数是对单张图片进行处理的,而mask处理进一步的是对每一个检测框进行处理的,

    def unmold_mask(mask, bbox, image_shape):
        """Converts a mask generated by the neural network to a format similar
        to its original shape.
        mask: [height, width] of type float. A small, typically 28x28 mask.
        bbox: [y1, x1, y2, x2]. The box to fit the mask in.
    
        Returns a binary mask with the same size as the original image.
        """
        threshold = 0.5
        y1, x1, y2, x2 = bbox
        mask = resize(mask, (y2 - y1, x2 - x1))
        mask = np.where(mask >= threshold, 1, 0).astype(np.bool)
    
        # Put the mask in the right location.
        full_mask = np.zeros(image_shape[:2], dtype=np.bool)
        full_mask[y1:y2, x1:x2] = mask
        return full_mask
    

    我们在inference中输出的mask信息仅仅是一般的生成网络输出,所以为了得到掩码格式我们需要一个阈值。明确了这个概念,下一步就简单了,我们将mask输出放缩到对应的box大小即可(此时的box已经相对原始图片进行了放缩,是像素坐标),然后将放缩后的掩码按照box相对原始图片的位置贴在一张和原始图片等大的空白图片上。

    我们对每一个检测目标做这个操作,就可以得到等同于检测目标数的原始图片大小的掩码图片(每个掩码图片上有一个掩码对象),将之按照axis=-1拼接,最终获取[h, w, n]格式输出,hw为原始图片大小,n为最终检测到的目标数目。

    最终,将计算结果返回,退出函数。

            # [n, (y1, x1, y2, x2)]
            # [n, class_id]
            # [n, class_id]
            # [h, w, n]
            return boxes, class_ids, scores, full_masks
    

     实际调用如下:

  • 相关阅读:
    xss攻击和csrf攻击的定义及区别
    php中Redis的扩展
    MySQL事务特性
    PHP的设计模式
    http协议
    sql语句的优化
    mysql存储引擎
    laravel框架安装Curl扩展
    laravel框架中安装 elasticsearch 包
    docker容器配置nginx负载均衡 -----加权
  • 原文地址:https://www.cnblogs.com/hellcat/p/9848096.html
Copyright © 2020-2023  润新知