• 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络暨TensorFlow和Keras交互简介


    零、参考资料

    有关FPN的介绍见『计算机视觉』FPN特征金字塔网络

    网络构架部分代码见Mask_RCNN/mrcnn/model.pyclass MaskRCNN的build方法的"inference"分支。

    1、Keras调用GPU设置

    【*】指定GPU

    import os
    os.environ["CUDA_VISIBLE_DEVICES"] = "2"

    【**】按需分配

    import tensorflow as tf
    import keras.backend.tensorflow_backend as KTF
    
    config = tf.ConfigProto()  
    config.gpu_options.allow_growth=True   #不全部占满显存, 按需分配
    # config.gpu_options.per_process_gpu_memory_fraction = 0.3 #指定分配30%空间
    sess = tf.Session(config=config)# 设置session
    KTF.set_session(sess)
    

    2、TensorFlow和Keras交互说明

    下面的交互方法几乎都是对keras的函数式API操作的,不过keras的函数模型转换为model对象也极为方便,KM.Model(input_tensors, output_tensors)操作一下即可。

    【*】使用TensorFlow建立keras新的层对象

    在网络中我们可以看到大量的继承了keras.engine.Layer类的新类,这是因为如果TensorFlow函数可以操作keras的tensor,但是其返回的TensorFlow的tensor不能被keras继续处理,所以我们需要建立新的keras层进行转换,将tf的Tensor可作为keras层的__init__参数参与层构建,在__call__方法内部使用tf的函数进行细粒度数据处理,最后返回的是keras层对象。如果不想使用Model类的各种方便方法而执意手动使用tf.Session()训练的话就没有封装它们的必要了。

    keras的tensor可以直接送入TensorFlow中:

    import tensorflow as tf
    import keras.backend as K
    
    rpn_match = tf.placeholder(tf.int8, [10, 2])
    tf.where(K.equal(rpn_match, 1))

    一个class实现例子如下,注意需要推断输出的shape:

    class PyramidROIAlign(KE.Layer):
        """Implements ROI Pooling on multiple levels of the feature pyramid.
        Params:
        - pool_shape: [pool_height, pool_width] of the output pooled regions. Usually [7, 7]
        Inputs:
        - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized
                 coordinates. Possibly padded with zeros if not enough
                 boxes to fill the array.
        - image_meta: [batch, (meta data)] Image details. See compose_image_meta()
        - feature_maps: List of feature maps from different levels of the pyramid.
                        Each is [batch, height, width, channels]
        Output:
        Pooled regions in the shape: [batch, num_boxes, pool_height, pool_width, channels].
        The width and height are those specific in the pool_shape in the layer
        constructor.
        """
    
        def __init__(self, pool_shape, **kwargs):
            super(PyramidROIAlign, self).__init__(**kwargs)
            self.pool_shape = tuple(pool_shape)
    
        def call(self, inputs):
            # num_boxes指的是proposal数目,它们均会作用于每张图片上,只是不同的proposal作用于图片
            # 的特征级别不同,我通过循环特征层寻找符合的proposal,应用ROIAlign
            # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords
            boxes = inputs[0]
    
            # Image meta
            # Holds details about the image. See compose_image_meta()
            image_meta = inputs[1]
    
            # Feature Maps. List of feature maps from different level of the
            # feature pyramid. Each is [batch, height, width, channels]
            feature_maps = inputs[2:]
    
            # Assign each ROI to a level in the pyramid based on the ROI area.
            y1, x1, y2, x2 = tf.split(boxes, 4, axis=2)
            h = y2 - y1
            w = x2 - x1
            # Use shape of first image. Images in a batch must have the same size.
            image_shape = parse_image_meta_graph(image_meta)['image_shape'][0]  # h, w, c
            # Equation 1 in the Feature Pyramid Networks paper. Account for
            # the fact that our coordinates are normalized here.
            # e.g. a 224x224 ROI (in pixels) maps to P4
            image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32)
            roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area)))  # h、w已经归一化
            roi_level = tf.minimum(5, tf.maximum(
                2, 4 + tf.cast(tf.round(roi_level), tf.int32)))  # 确保值位于2到5之间
            roi_level = tf.squeeze(roi_level, 2)  # [batch, num_boxes]
    
            # Loop through levels and apply ROI pooling to each. P2 to P5.
            pooled = []
            box_to_level = []
            for i, level in enumerate(range(2, 6)):
                # tf.where 返回值格式 [坐标1, 坐标2……]
                # np.where 返回值格式 [[坐标1.x, 坐标2.x……], [坐标1.y, 坐标2.y……]]
                ix = tf.where(tf.equal(roi_level, level))  # 返回坐标表示:第n张图片的第i个proposal
                level_boxes = tf.gather_nd(boxes, ix)  # [本level的proposal数目, 4]
    
                # Box indices for crop_and_resize.
                box_indices = tf.cast(ix[:, 0], tf.int32)  # 记录每个propose对应图片序号
    
                # Keep track of which box is mapped to which level
                box_to_level.append(ix)
    
                # Stop gradient propogation to ROI proposals
                level_boxes = tf.stop_gradient(level_boxes)
                box_indices = tf.stop_gradient(box_indices)
    
                # Crop and Resize
                # From Mask R-CNN paper: "We sample four regular locations, so
                # that we can evaluate either max or average pooling. In fact,
                # interpolating only a single value at each bin center (without
                # pooling) is nearly as effective."
                #
                # Here we use the simplified approach of a single value per bin,
                # which is how it's done in tf.crop_and_resize()
                # Result: [this_level_num_boxes, pool_height, pool_width, channels]
                pooled.append(tf.image.crop_and_resize(
                    feature_maps[i], level_boxes, box_indices, self.pool_shape,
                    method="bilinear"))
                # 输入参数shape:
                # [batch, image_height, image_width, channels]
                # [this_level_num_boxes, 4]
                # [this_level_num_boxes]
                # [height, pool_width]
    
            # Pack pooled features into one tensor
            pooled = tf.concat(pooled, axis=0)  # [batch*num_boxes, pool_height, pool_width, channels]
    
            # Pack box_to_level mapping into one array and add another
            # column representing the order of pooled boxes
            box_to_level = tf.concat(box_to_level, axis=0)  # [batch*num_boxes, 2]
            box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1)  # [batch*num_boxes, 1]
            box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range],
                                     axis=1)  # [batch*num_boxes, 3]
    
            # 截止到目前,我们获取了记录全部ROIAlign结果feat集合的张量pooled,和记录这些feat相关信息的张量box_to_level,
            # 由于提取方法的原因,此时的feat并不是按照原始顺序排序(先按batch然后按box index排序),下面我们设法将之恢复顺
            # 序(ROIAlign作用于对应图片的对应proposal生成feat)
            # Rearrange pooled features to match the order of the original boxes
            # Sort box_to_level by batch then box index
            # TF doesn't have a way to sort by two columns, so merge them and sort.
            # box_to_level[i, 0]表示的是当前feat隶属的图片索引,box_to_level[i, 1]表示的是其box序号
            sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1]  # [batch*num_boxes]
            ix = tf.nn.top_k(sorting_tensor, k=tf.shape(
                box_to_level)[0]).indices[::-1]
            ix = tf.gather(box_to_level[:, 2], ix)
            pooled = tf.gather(pooled, ix)
    
            # Re-add the batch dimension
            # [batch, num_boxes, (y1, x1, y2, x2)], [batch*num_boxes, pool_height, pool_width, channels]
            shape = tf.concat([tf.shape(boxes)[:2], tf.shape(pooled)[1:]], axis=0)
            pooled = tf.reshape(pooled, shape)
            return pooled  # [batch, num_boxes, pool_height, pool_width, channels]
    
        def compute_output_shape(self, input_shape):
            return input_shape[0][:2] + self.pool_shape + (input_shape[2][-1], )

    【**】keras的Lambda函数可以直接将TensorFlow操作引入keras

    keras的Module不能接收tf的tensor作为数据流,所有需要使用KL.Lambda将之转化为keras的数据流,如下这样将tf写好的函数输出直接转换为keras的Module可以接收的类型,和上面的方法1相比,这里的lambda接受外部参数(一般位于类的__inti__中)调整函数行为并不方便:

    rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x)
    

    【***】继承keras.layer的层对象

    和方法1相比,这种方法同样需要实现__call__方法,不过一般会super父类,用于改写keras已经实现的层方法。

    class BatchNorm(KL.BatchNormalization):
        """Extends the Keras BatchNormalization class to allow a central place
        to make changes if needed.
        Batch normalization has a negative effect on training if batches are small
        so this layer is often frozen (via setting in Config class) and functions
        as linear layer.
        """
        def call(self, inputs, training=None):
            """
            Note about training values:
                None: Train BN layers. This is the normal mode
                False: Freeze BN layers. Good when batch size is small
                True: (don't use). Set layer in training mode even when making inferences
            """
            return super(self.__class__, self).call(inputs, training=training)

    一、共享网络概览

    按照逻辑顺序,我们首先来看处于流程图左上角的整张图最大的组成分支:特征提取网络。

    可以看到本部分大致分为以下几个部分(即原图的三列):

    ResNet101部分(FPN的bottom-up部分)

    FPN的up-bottom部分和横向连接部分

    最终特征重构部分

    二、源码浏览

    整个MaskRCNN类初始化之后的第一个方法就是build网络用的,在mode参数为inference情况下,下面给出了正式建立特征提取网络之前的class内部前置代码,

    class MaskRCNN():
        """Encapsulates the Mask RCNN model functionality.
    
        The actual Keras model is in the keras_model property.
        """
    
        def __init__(self, mode, config, model_dir):
            """
            mode: Either "training" or "inference"
            config: A Sub-class of the Config class
            model_dir: Directory to save training logs and trained weights
            """
            assert mode in ['training', 'inference']
            self.mode = mode
            self.config = config
            self.model_dir = model_dir
            self.set_log_dir()
            self.keras_model = self.build(mode=mode, config=config)
    
        def build(self, mode, config):
            """Build Mask R-CNN architecture.
                input_shape: The shape of the input image.
                mode: Either "training" or "inference". The inputs and
                    outputs of the model differ accordingly.
            """
            assert mode in ['training', 'inference']
        
            # Image size must be dividable by 2 multiple times
            h, w = config.IMAGE_SHAPE[:2]  # [1024 1024 3]
            if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):
                raise Exception("Image size must be dividable by 2 at least 6 times "
                                "to avoid fractions when downscaling and upscaling." # <-----
                                "For example, use 256, 320, 384, 448, 512, ... etc. ")
    
            # Inputs
            input_image = KL.Input(
                shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image")
            input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE],
                                        name="input_image_meta")
            if mode == "training":
                ……
            elif mode == "inference":
                # Anchors in normalized coordinates
                input_anchors = KL.Input(shape=[None, 4], name="input_anchors")
    

    这里强制要求了图片裁剪后尺度为2^n,且n>=6,保证下采样后不产生小数

    整个程序需要外部输入的变量(inference模式)仅有三个,注意keras的习惯不同于placeholder,上面代码的shape没有包含batch,实际shape是下面的样式:

    input_image:输入图片,[batch, None, None, config.IMAGE_SHAPE[2]]

    input_image_meta:图片的信息(包含形状、预处理信息等,后面会介绍),[batch, config.IMAGE_META_SIZE]

    input_anchors:锚框,[batch, None, 4]

    ResNet101部分

    接上面build函数代码,经由如下判断(inference中该参数是字符串"resnet101",所以进入else分支),建立ResNet网络图,

            # Build the shared convolutional layers.
            # Bottom-up Layers
            # Returns a list of the last layers of each stage, 5 in total.
            # Don't create the thead (stage 5), so we pick the 4th item in the list.
            if callable(config.BACKBONE):
                _, C2, C3, C4, C5 = config.BACKBONE(input_image, stage5=True,
                                                    train_bn=config.TRAIN_BN)
            else:
                _, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE,
                                                 stage5=True, train_bn=config.TRAIN_BN)
    

    上述主函数调用ResNet图构建代码如下,其包含应用shortcut和没有应用shortcut两种子结构:

     (图摘自网上)

    ############################################################
    #  Resnet Graph
    ############################################################
    
    # Code adopted from:
    # https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py
    
    def identity_block(input_tensor, kernel_size, filters, stage, block,
                       use_bias=True, train_bn=True):
        """The identity_block is the block that has no conv layer at shortcut
        # Arguments
            input_tensor: input tensor
            kernel_size: default 3, the kernel size of middle conv layer at main path
            filters: list of integers, the nb_filters of 3 conv layer at main path
            stage: integer, current stage label, used for generating layer names
            block: 'a','b'..., current block label, used for generating layer names
            use_bias: Boolean. To use or not use a bias in conv layers.
            train_bn: Boolean. Train or freeze Batch Norm layers
        """
        nb_filter1, nb_filter2, nb_filter3 = filters
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
    
        x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a',
                      use_bias=use_bias)(input_tensor)
        x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn)
        x = KL.Activation('relu')(x)
    
        x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
                      name=conv_name_base + '2b', use_bias=use_bias)(x)
        x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn)
        x = KL.Activation('relu')(x)
    
        x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c',
                      use_bias=use_bias)(x)
        x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn)
    
        x = KL.Add()([x, input_tensor])
        x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)
        return x
    
    
    def conv_block(input_tensor, kernel_size, filters, stage, block,
                   strides=(2, 2), use_bias=True, train_bn=True):
        """conv_block is the block that has a conv layer at shortcut
        # Arguments
            input_tensor: input tensor
            kernel_size: default 3, the kernel size of middle conv layer at main path
            filters: list of integers, the nb_filters of 3 conv layer at main path
            stage: integer, current stage label, used for generating layer names
            block: 'a','b'..., current block label, used for generating layer names
            use_bias: Boolean. To use or not use a bias in conv layers.
            train_bn: Boolean. Train or freeze Batch Norm layers
        Note that from stage 3, the first conv layer at main path is with subsample=(2,2)
        And the shortcut should have subsample=(2,2) as well
        """
        nb_filter1, nb_filter2, nb_filter3 = filters
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
    
        x = KL.Conv2D(nb_filter1, (1, 1), strides=strides,
                      name=conv_name_base + '2a', use_bias=use_bias)(input_tensor)
        x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn)
        x = KL.Activation('relu')(x)
    
        x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
                      name=conv_name_base + '2b', use_bias=use_bias)(x)
        x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn)
        x = KL.Activation('relu')(x)
    
        x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base +
                      '2c', use_bias=use_bias)(x)
        x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn)
    
        shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides,
                             name=conv_name_base + '1', use_bias=use_bias)(input_tensor)
        shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn)
    
        x = KL.Add()([x, shortcut])
        x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)
        return x
    
    
    def resnet_graph(input_image, architecture, stage5=False, train_bn=True):
        """Build a ResNet graph.
            architecture: Can be resnet50 or resnet101
            stage5: Boolean. If False, stage5 of the network is not created
            train_bn: Boolean. Train or freeze Batch Norm layers
        """
        assert architecture in ["resnet50", "resnet101"]
        # Stage 1
        x = KL.ZeroPadding2D((3, 3))(input_image)
        x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
        x = BatchNorm(name='bn_conv1')(x, training=train_bn)
        x = KL.Activation('relu')(x)
        C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
        # Stage 2
        x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)
        x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn)
        C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)
        # Stage 3
        x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)
        C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)
        # Stage 4
        x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)
        block_count = {"resnet50": 5, "resnet101": 22}[architecture]
        for i in range(block_count):
            x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)
        C4 = x
        # Stage 5
        if stage5:
            x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)
            x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)
            C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)
        else:
            C5 = None
        return [C1, C2, C3, C4, C5]
    

     BN层为了可能的扩展进行了封装,不过暂时没什么扩展:

    class BatchNorm(KL.BatchNormalization):
        """Extends the Keras BatchNormalization class to allow a central place
        to make changes if needed.
    
        Batch normalization has a negative effect on training if batches are small
        so this layer is often frozen (via setting in Config class) and functions
        as linear layer.
        """
        def call(self, inputs, training=None):
            """
            Note about training values:
                None: Train BN layers. This is the normal mode
                False: Freeze BN layers. Good when batch size is small
                True: (don't use). Set layer in training mode even when making inferences
            """
            return super(self.__class__, self).call(inputs, training=training)
    

    FPN处理部分

    接上面build函数代码,剩下部分比较简单,和示意图对比几乎平铺直叙,

            # Top-down Layers
            # TODO: add assert to varify feature map sizes match what's in config
            P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)  # 256
            P4 = KL.Add(name="fpn_p4add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])
            P3 = KL.Add(name="fpn_p3add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])
            P2 = KL.Add(name="fpn_p2add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])
            # Attach 3x3 conv to all P layers to get the final feature maps.
            P2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)
            P3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)
            P4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)
            P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)
            # P6 is used for the 5th anchor scale in RPN. Generated by
            # subsampling from P5 with stride of 2.
            P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)        
    

    接上面build函数代码,最后我们提取的特征集合如下:

            # Note that P6 is used in RPN, but not in the classifier heads.
            rpn_feature_maps = [P2, P3, P4, P5, P6]
            mrcnn_feature_maps = [P2, P3, P4, P5]
    

    其中rpn_feature_maps对应图中的实线输出,送入RPN网络分类/回归得到锚框的前景/背景鉴别结果;而mrcnn_feature_maps则是后面进行ROI Align时的切割目标。

    附录、build函数总览

        def build(self, mode, config):
            """Build Mask R-CNN architecture.
                input_shape: The shape of the input image.
                mode: Either "training" or "inference". The inputs and
                    outputs of the model differ accordingly.
            """
            assert mode in ['training', 'inference']
    
            # Image size must be dividable by 2 multiple times
            h, w = config.IMAGE_SHAPE[:2]  # [1024 1024 3]
            if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):  # 这里就限定了下采样不会产生坐标误差
                raise Exception("Image size must be dividable by 2 at least 6 times "
                                "to avoid fractions when downscaling and upscaling."
                                "For example, use 256, 320, 384, 448, 512, ... etc. ")
    
            # Inputs
            input_image = KL.Input(
                shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image")
            input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE],
                                        name="input_image_meta")
            if mode == "training":
                # RPN GT
                input_rpn_match = KL.Input(
                    shape=[None, 1], name="input_rpn_match", dtype=tf.int32)
                input_rpn_bbox = KL.Input(
                    shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32)
    
                # Detection GT (class IDs, bounding boxes, and masks)
                # 1. GT Class IDs (zero padded)
                input_gt_class_ids = KL.Input(
                    shape=[None], name="input_gt_class_ids", dtype=tf.int32)
                # 2. GT Boxes in pixels (zero padded)
                # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates
                input_gt_boxes = KL.Input(
                    shape=[None, 4], name="input_gt_boxes", dtype=tf.float32)
                # Normalize coordinates
                gt_boxes = KL.Lambda(lambda x: norm_boxes_graph(
                    x, K.shape(input_image)[1:3]))(input_gt_boxes)
                # 3. GT Masks (zero padded)
                # [batch, height, width, MAX_GT_INSTANCES]
                if config.USE_MINI_MASK:
                    input_gt_masks = KL.Input(
                        shape=[config.MINI_MASK_SHAPE[0],
                               config.MINI_MASK_SHAPE[1], None],
                        name="input_gt_masks", dtype=bool)
                else:
                    input_gt_masks = KL.Input(
                        shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None],
                        name="input_gt_masks", dtype=bool)
            elif mode == "inference":
                # Anchors in normalized coordinates
                input_anchors = KL.Input(shape=[None, 4], name="input_anchors")
    
            # Build the shared convolutional layers.
            # Bottom-up Layers
            # Returns a list of the last layers of each stage, 5 in total.
            # Don't create the thead (stage 5), so we pick the 4th item in the list.
            if callable(config.BACKBONE):
                _, C2, C3, C4, C5 = config.BACKBONE(input_image, stage5=True,
                                                    train_bn=config.TRAIN_BN)
            else:
                _, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE,
                                                 stage5=True, train_bn=config.TRAIN_BN)
            # Top-down Layers
            # TODO: add assert to varify feature map sizes match what's in config
            P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)  # 256
            P4 = KL.Add(name="fpn_p4add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])
            P3 = KL.Add(name="fpn_p3add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])
            P2 = KL.Add(name="fpn_p2add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])
            # Attach 3x3 conv to all P layers to get the final feature maps.
            P2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)
            P3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)
            P4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)
            P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)
            # P6 is used for the 5th anchor scale in RPN. Generated by
            # subsampling from P5 with stride of 2.
            P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)
    
            # Note that P6 is used in RPN, but not in the classifier heads.
            rpn_feature_maps = [P2, P3, P4, P5, P6]
            mrcnn_feature_maps = [P2, P3, P4, P5]
    
            # Anchors
            if mode == "training":
                anchors = self.get_anchors(config.IMAGE_SHAPE)
                # Duplicate across the batch dimension because Keras requires it
                # TODO: can this be optimized to avoid duplicating the anchors?
                anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape)
                # A hack to get around Keras's bad support for constants
                anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image)
            else:
                anchors = input_anchors
    
            # RPN Model, 返回的是keras的Module对象, 注意keras中的Module对象是可call的
            rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE,  # 1 3 256
                                  len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE)
            # Loop through pyramid layers
            layer_outputs = []  # list of lists
            for p in rpn_feature_maps:
                layer_outputs.append(rpn([p]))  # 保存各pyramid特征经过RPN之后的结果
            # Concatenate layer outputs
            # Convert from list of lists of level outputs to list of lists
            # of outputs across levels.
            # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
            output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"]
            outputs = list(zip(*layer_outputs))  # [[logits2,……6], [class2,……6], [bbox2,……6]]
            outputs = [KL.Concatenate(axis=1, name=n)(list(o))
                       for o, n in zip(outputs, output_names)]
    
            # [batch, num_anchors, 2/4]
            # 其中num_anchors指的是全部特征层上的anchors总数
            rpn_class_logits, rpn_class, rpn_bbox = outputs
    
            # Generate proposals
            # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates
            # and zero padded.
            # POST_NMS_ROIS_INFERENCE = 1000
            # POST_NMS_ROIS_TRAINING = 2000
            proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"
                else config.POST_NMS_ROIS_INFERENCE
            # [IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)]
            # IMAGES_PER_GPU取代了batch,之后说的batch都是IMAGES_PER_GPU
            rpn_rois = ProposalLayer(
                proposal_count=proposal_count,
                nms_threshold=config.RPN_NMS_THRESHOLD,  # 0.7
                name="ROI",
                config=config)([rpn_class, rpn_bbox, anchors])
    
            if mode == "training":
                # Class ID mask to mark class IDs supported by the dataset the image
                # came from.
                active_class_ids = KL.Lambda(
                    lambda x: parse_image_meta_graph(x)["active_class_ids"]
                    )(input_image_meta)
    
                if not config.USE_RPN_ROIS:
                    # Ignore predicted ROIs and use ROIs provided as an input.
                    input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4],
                                          name="input_roi", dtype=np.int32)
                    # Normalize coordinates
                    target_rois = KL.Lambda(lambda x: norm_boxes_graph(
                        x, K.shape(input_image)[1:3]))(input_rois)
                else:
                    target_rois = rpn_rois
    
                # Generate detection targets
                # Subsamples proposals and generates target outputs for training
                # Note that proposal class IDs, gt_boxes, and gt_masks are zero
                # padded. Equally, returned rois and targets are zero padded.
                rois, target_class_ids, target_bbox, target_mask =
                    DetectionTargetLayer(config, name="proposal_targets")([
                        target_rois, input_gt_class_ids, gt_boxes, input_gt_masks])
    
                # Network Heads
                # TODO: verify that this handles zero padded ROIs
                mrcnn_class_logits, mrcnn_class, mrcnn_bbox =
                    fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta,
                                         config.POOL_SIZE, config.NUM_CLASSES,
                                         train_bn=config.TRAIN_BN,
                                         fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)
    
                mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps,
                                                  input_image_meta,
                                                  config.MASK_POOL_SIZE,
                                                  config.NUM_CLASSES,
                                                  train_bn=config.TRAIN_BN)
    
                # TODO: clean up (use tf.identify if necessary)
                output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois)
    
                # Losses
                rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")(
                    [input_rpn_match, rpn_class_logits])
                rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")(
                    [input_rpn_bbox, input_rpn_match, rpn_bbox])
                class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")(
                    [target_class_ids, mrcnn_class_logits, active_class_ids])
                bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")(
                    [target_bbox, target_class_ids, mrcnn_bbox])
                mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")(
                    [target_mask, target_class_ids, mrcnn_mask])
    
                # Model
                inputs = [input_image, input_image_meta,
                          input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks]
                if not config.USE_RPN_ROIS:
                    inputs.append(input_rois)
                outputs = [rpn_class_logits, rpn_class, rpn_bbox,
                           mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask,
                           rpn_rois, output_rois,
                           rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss]
                model = KM.Model(inputs, outputs, name='mask_rcnn')
            else:
                # Network Heads
                # Proposal classifier and BBox regressor heads
                # output shapes:
                #     mrcnn_class_logits: [batch, num_rois, NUM_CLASSES] classifier logits (before softmax)
                #     mrcnn_class: [batch, num_rois, NUM_CLASSES] classifier probabilities
                #     mrcnn_bbox(deltas): [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
                mrcnn_class_logits, mrcnn_class, mrcnn_bbox =
                    fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta,
                                         config.POOL_SIZE, config.NUM_CLASSES,
                                         train_bn=config.TRAIN_BN,
                                         fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)
    
                # Detections
                # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in
                # normalized coordinates
                detections = DetectionLayer(config, name="mrcnn_detection")(
                    [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta])
    
                # Create masks for detections
                detection_boxes = KL.Lambda(lambda x: x[..., :4])(detections)
                mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps,
                                                  input_image_meta,
                                                  config.MASK_POOL_SIZE,
                                                  config.NUM_CLASSES,
                                                  train_bn=config.TRAIN_BN)
    
                model = KM.Model([input_image, input_image_meta, input_anchors],
                                 [detections, mrcnn_class, mrcnn_bbox,
                                     mrcnn_mask, rpn_rois, rpn_class, rpn_bbox],
                                 name='mask_rcnn')
    
            # Add multi-GPU support.
            if config.GPU_COUNT > 1:
                from mrcnn.parallel_model import ParallelModel
                model = ParallelModel(model, config.GPU_COUNT)
    
            return model
    
  • 相关阅读:
    xen4.4.2/xen-4.4.2/stubdom/vtpmmgr/README
    安装xen上的Ubuntu虚拟机的配置文件
    xen平台中vtpm的使用说明
    TPM学习笔记1-1
    通过TSS软件栈使用TPM——获取并改变TPM寄存器-学习笔记1
    安装TPMemulator
    unik compilers-返回可用于目标unik后端的编译器列表。
    构建一个Java语言的unikernel,(基于OSv的 unikernel)
    Ubuntu14.04下安装maven
    学习笔记2-了解unik的设计
  • 原文地址:https://www.cnblogs.com/hellcat/p/9802349.html
Copyright © 2020-2023  润新知