Fork版本项目地址:SSD
一、输入标签生成
在数据预处理之后,图片、类别、真实框格式较为原始,不能够直接作为损失函数的输入标签(ssd向前网络只需要图像就行,这里的处理主要需要满足loss的计算),对于一张图片(三维CHW)我们需要如下格式的数据作为损失函数标签:
gclasse: 搜索框对应的真实类别
长度为ssd特征层f的list,每一个元素是一个Tensor,shape为:该层中心点行数×列数×每个中心点包含搜索框数目
gscores: 搜索框和真实框的IOU,gclasses中记录的就是该真实框的类别
长度为ssd特征层f的list,每一个元素是一个Tensor,shape为:该层中心点行数×列数×每个中心点包含搜索框数目
glocalisations: 搜索框相较于真实框位置修正,由于有4个坐标,所以维度多了一维
长度为ssd特征层f的list,每一个元素是一个Tensor,shape为:该层中心点行数×列数×每个中心点包含搜索框数目×4
为了计算出上面标签,我们函数调用如下(train_ssd_network.py):
# f层个(m,m,k),f层个(m,m,k,4xywh),f层个(m,m,k) f层表示提取ssd特征的层的数目 # 0-20数字,方便loss的坐标记录,IOU值 gclasses, glocalisations, gscores = ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
输入变量都是前几节中的函数输出(train_ssd_network.py):
ssd_anchors = ssd_net.anchors(ssd_shape) # 调用类方法,创建搜素框 # Pre-processing image, labels and bboxes. # 'CHW' (n,) (n, 4) image, glabels, gbboxes = image_preprocessing_fn(image, glabels, gbboxes, out_shape=ssd_shape, # (300,300) data_format=DATA_FORMAT) # 'NCHW'
至此,我们再来看一看该函数如何实现,其处理过程是按照ssd特征层进行划分,首先建立三个list,然后对于每一个特征层计算该层的三个Tensor,最后分别添加进list中(ssd_common.py):
def tf_ssd_bboxes_encode(labels, bboxes, anchors, num_classes, no_annotation_label, ignore_threshold=0.5, prior_scaling=(0.1, 0.1, 0.2, 0.2), dtype=tf.float32, scope='ssd_bboxes_encode'): with tf.name_scope(scope): target_labels = [] target_localizations = [] target_scores = [] # anchors_layer: (y, x, h, w) for i, anchors_layer in enumerate(anchors): with tf.name_scope('bboxes_encode_block_%i' % i): # (m,m,k),xywh(m,m,4k),(m,m,k) t_labels, t_loc, t_scores = tf_ssd_bboxes_encode_layer(labels, bboxes, anchors_layer, num_classes, no_annotation_label, ignore_threshold, prior_scaling, dtype) target_labels.append(t_labels) target_localizations.append(t_loc) target_scores.append(t_scores) return target_labels, target_localizations, target_scores
每一层处理是重点(ssd_common.py),从这里我们可以更深刻体会到所有框体长度信息归一化的便捷之处——不同层的框体均可以直接和真实框做运算,毕竟它们都是0~1的相对位置:
# 为了有助理解,m表示该层中心点行列数,k为每个中心点对应的框数,n为图像上的目标数 def tf_ssd_bboxes_encode_layer(labels, # (n,) bboxes, # (n, 4) anchors_layer, # y(m, m, 1), x(m, m, 1), h(k,), w(k,) num_classes, no_annotation_label, ignore_threshold=0.5, prior_scaling=(0.1, 0.1, 0.2, 0.2), dtype=tf.float32): """Encode groundtruth labels and bounding boxes using SSD anchors from one layer. Arguments: labels: 1D Tensor(int64) containing groundtruth labels; bboxes: Nx4 Tensor(float) with bboxes relative coordinates; anchors_layer: Numpy array with layer anchors; matching_threshold: Threshold for positive match with groundtruth bboxes; prior_scaling: Scaling of encoded coordinates. Return: (target_labels, target_localizations, target_scores): Target Tensors. """ # Anchors coordinates and volume. yref, xref, href, wref = anchors_layer # y(m, m, 1), x(m, m, 1), h(k,), w(k,) ymin = yref - href / 2. # (m, m, k) xmin = xref - wref / 2. ymax = yref + href / 2. xmax = xref + wref / 2. vol_anchors = (xmax - xmin) * (ymax - ymin) # 搜索框面积(m, m, k) # Initialize tensors... # 下面各个Tensor矩阵的shape等于中心点坐标矩阵的shape shape = (yref.shape[0], yref.shape[1], href.size) # (m, m, k) feat_labels = tf.zeros(shape, dtype=tf.int64) # (m, m, k) feat_scores = tf.zeros(shape, dtype=dtype) feat_ymin = tf.zeros(shape, dtype=dtype) feat_xmin = tf.zeros(shape, dtype=dtype) feat_ymax = tf.ones(shape, dtype=dtype) feat_xmax = tf.ones(shape, dtype=dtype) def jaccard_with_anchors(bbox): """Compute jaccard score between a box and the anchors. """ int_ymin = tf.maximum(ymin, bbox[0]) # (m, m, k) int_xmin = tf.maximum(xmin, bbox[1]) int_ymax = tf.minimum(ymax, bbox[2]) int_xmax = tf.minimum(xmax, bbox[3]) h = tf.maximum(int_ymax - int_ymin, 0.) w = tf.maximum(int_xmax - int_xmin, 0.) # Volumes. # 处理搜索框和bbox之间的联系 inter_vol = h * w # 交集面积 union_vol = vol_anchors - inter_vol + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) # 并集面积 jaccard = tf.div(inter_vol, union_vol) # 交集/并集,即IOU return jaccard # (m, m, k) def condition(i, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax): """Condition: check label index. """ r = tf.less(i, tf.shape(labels)) return r[0] # tf.shape(labels)有维度,所以r有维度 def body(i, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax): """Body: update feature labels, scores and bboxes. Follow the original SSD paper for that purpose: - assign values when jaccard > 0.5; - only update if beat the score of other bboxes. """ # Jaccard score. label = labels[i] # 当前图片上第i个对象的标签 bbox = bboxes[i] # 当前图片上第i个对象的真实框bbox jaccard = jaccard_with_anchors(bbox) # 当前对象的bbox和当前层的搜索网格IOU,(m, m, k) # Mask: check threshold + scores + no annotations + num_classes. mask = tf.greater(jaccard, feat_scores) # 掩码矩阵,IOU大于历史得分的为True,(m, m, k) # mask = tf.logical_and(mask, tf.greater(jaccard, matching_threshold)) mask = tf.logical_and(mask, feat_scores > -0.5) mask = tf.logical_and(mask, label < num_classes) # 不太懂,label应该必定小于类别数 imask = tf.cast(mask, tf.int64) # 整形mask fmask = tf.cast(mask, dtype) # 浮点型mask # Update values using mask. # 保证feat_labels存储对应位置得分最大对象标签,feat_scores存储那个得分 # (m, m, k) × 当前类别scalar + (1 - (m, m, k)) × (m, m, k) # 更新label记录,此时的imask已经保证了True位置当前对像得分高于之前的对象得分,其他位置值不变 feat_labels = imask * label + (1 - imask) * feat_labels # 更新score记录,mask为True使用本类别IOU,否则不变 feat_scores = tf.where(mask, jaccard, feat_scores) # 下面四个矩阵存储对应label的真实框坐标 # (m, m, k) × 当前框坐标scalar + (1 - (m, m, k)) × (m, m, k) feat_ymin = fmask * bbox[0] + (1 - fmask) * feat_ymin feat_xmin = fmask * bbox[1] + (1 - fmask) * feat_xmin feat_ymax = fmask * bbox[2] + (1 - fmask) * feat_ymax feat_xmax = fmask * bbox[3] + (1 - fmask) * feat_xmax return [i+1, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax] # Main loop definition. # 对当前图像上每一个目标进行循环 i = 0 (i, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax) = tf.while_loop(condition, body, [i, feat_labels, feat_scores, feat_ymin, feat_xmin, feat_ymax, feat_xmax]) # Transform to center / size. # 这里的y、x、h、w指的是对应位置所属真实框的相关属性 feat_cy = (feat_ymax + feat_ymin) / 2. feat_cx = (feat_xmax + feat_xmin) / 2. feat_h = feat_ymax - feat_ymin feat_w = feat_xmax - feat_xmin # Encode features. # prior_scaling: [0.1, 0.1, 0.2, 0.2],放缩意义不明 # ((m, m, k) - (m, m, 1)) / (k,) * 10 # 以搜索网格中心点为参考,真实框中心的偏移,单位长度为网格hw feat_cy = (feat_cy - yref) / href / prior_scaling[0] feat_cx = (feat_cx - xref) / wref / prior_scaling[1] # log((m, m, k) / (m, m, 1)) * 5 # 真实框宽高/搜索网格宽高,取对 feat_h = tf.log(feat_h / href) / prior_scaling[2] feat_w = tf.log(feat_w / wref) / prior_scaling[3] # Use SSD ordering: x / y / w / h instead of ours.(m, m, k, 4) feat_localizations = tf.stack([feat_cx, feat_cy, feat_w, feat_h], axis=-1) # -1会扩维,故有4 return feat_labels, feat_localizations, feat_scores
可以看到(最后几行),feat_localizations用于位置修正记录,其中存储的并不是直接的搜索框和真实框的差,而是按照loss函数所需要的格式进行存储,但是进行prior_scaling处理的意义不明,不过直观来看对loss函数不构成负面影响(损失函数值依旧是搜索框等于真实框最佳)。
二、处理为batch
生成batch数据队列
截止到目前,我们的数据都是对单张图片而言,需要将之整理为batch size的Tensor,不过有点小麻烦,就是我们的数据以list包含Tensor为主,维度扩充需要一点小技巧(tf_utils.py):
def reshape_list(l, shape=None): """Reshape list of (list): 1D to 2D or the other way around. Args: l: List or List of list. shape: 1D or 2D shape. Return Reshaped list. """ r = [] if shape is None: # Flatten everything. for a in l: if isinstance(a, (list, tuple)): r = r + list(a) else: r.append(a) else: # Reshape to list of list. i = 0 for s in shape: if s == 1: r.append(l[i]) else: r.append(l[i:i+s]) i += s return r
这个函数可以将list1:[Tensor11, [Tensor21, Tensor22, ……], [Ten31, Tensor32, ……], ……]和list2:[Tensor1, Tensor2, ……]这样的形式相互转换,需要的就是记录下list1中各子list长度,单个Tensor记为1(train_ssd_network.py):
batch_shape = [1] + [len(ssd_anchors)] * 3 # (1,f层,f层,f层) # Training batches and queue. r = tf.train.batch( # 图片,中心点类别,真实框坐标,得分 tf_utils.reshape_list([image, gclasses, glocalisations, gscores]), batch_size=FLAGS.batch_size, # 32 num_threads=FLAGS.num_preprocessing_threads, capacity=5 * FLAGS.batch_size) b_image, b_gclasses, b_glocalisations, b_gscores = tf_utils.reshape_list(r, batch_shape) # Intermediate queueing: unique batch computation pipeline for all # GPUs running the training. batch_queue = slim.prefetch_queue.prefetch_queue( tf_utils.reshape_list([b_image, b_gclasses, b_glocalisations, b_gscores]), capacity=2 * deploy_config.num_clones)
由于tf.train.batch接收输入格式为[Tensor1, Tensor2, ……],所以要先使用上面函数处理输入,使单张图片的标签数据变化为batch size的标签数据,再将标签数据格式变换回来(实际就是把list1化为list2后给其中每一个Tensor加了一个维度,再变换回list1的格式),最后将batch size的Tensor创建队列,不过没必要这么麻烦,实际上像下面这么做也不会报错,省略了来回折腾Tensor的过程……
batch_shape = [1] + [len(ssd_anchors)] * 3 # (1,f层,f层,f层) r = tf.train.batch( # 图片,中心点类别,真实框坐标,得分 tf_utils.reshape_list([image, gclasses, glocalisations, gscores]), batch_size=FLAGS.batch_size, # 32 num_threads=FLAGS.num_preprocessing_threads, capacity=5 * FLAGS.batch_size) # Intermediate queueing: unique batch computation pipeline for all # GPUs running the training. batch_queue = slim.prefetch_queue.prefetch_queue( r, # <-----输入格式实际上并不需要调整 capacity=2 * deploy_config.num_clones)
获取batch数据队列
# Dequeue batch. b_image, b_gclasses, b_glocalisations, b_gscores = tf_utils.reshape_list(batch_queue.dequeue(), batch_shape) # 重整list
出队后整理一下list格式即可,此时获取的数据格式如下(vgg_300为例):
<tf.Tensor 'batch:0' shape=(32, 3, 300, 300) dtype=float32>
[<tf.Tensor 'batch:1' shape=(32, 38, 38, 4) dtype=int64>,
<tf.Tensor 'batch:2' shape=(32, 19, 19, 6) dtype=int64>,
<tf.Tensor 'batch:3' shape=(32, 10, 10, 6) dtype=int64>,
<tf.Tensor 'batch:4' shape=(32, 5, 5, 6) dtype=int64>,
<tf.Tensor 'batch:5' shape=(32, 3, 3, 4) dtype=int64>,
<tf.Tensor 'batch:6' shape=(32, 1, 1, 4) dtype=int64>]
[<tf.Tensor 'batch:7' shape=(32, 38, 38, 4, 4) dtype=float32>,
<tf.Tensor 'batch:8' shape=(32, 19, 19, 6, 4) dtype=float32>,
<tf.Tensor 'batch:9' shape=(32, 10, 10, 6, 4) dtype=float32>,
<tf.Tensor 'batch:10' shape=(32, 5, 5, 6, 4) dtype=float32>,
<tf.Tensor 'batch:11' shape=(32, 3, 3, 4, 4) dtype=float32>,
<tf.Tensor 'batch:12' shape=(32, 1, 1, 4, 4) dtype=float32>]
[<tf.Tensor 'batch:13' shape=(32, 38, 38, 4) dtype=float32>,
<tf.Tensor 'batch:14' shape=(32, 19, 19, 6) dtype=float32>,
<tf.Tensor 'batch:15' shape=(32, 10, 10, 6) dtype=float32>,
<tf.Tensor 'batch:16' shape=(32, 5, 5, 6) dtype=float32>,
<tf.Tensor 'batch:17' shape=(32, 3, 3, 4) dtype=float32>,
<tf.Tensor 'batch:18' shape=(32, 1, 1, 4) dtype=float32>]
此时的数据格式已经符合loss函数和网络输入要求,运行即可:
# Construct SSD network. # 这个实例方法会返回之前定义的函数ssd_arg_scope(允许修改两个参数) arg_scope = ssd_net.arg_scope(weight_decay=FLAGS.weight_decay, data_format=DATA_FORMAT) with slim.arg_scope(arg_scope): # predictions: (BS, H, W, 4, 21) # localisations: (BS, H, W, 4, 4) # logits: (BS, H, W, 4, 21) predictions, localisations, logits, end_points = ssd_net.net(b_image, is_training=True) # Add loss function. ssd_net.losses(logits, localisations, b_gclasses, b_glocalisations, b_gscores, match_threshold=FLAGS.match_threshold, # .5 negative_ratio=FLAGS.negative_ratio, # 3 alpha=FLAGS.loss_alpha, # 1 label_smoothing=FLAGS.label_smoothing) # .0
正向传播函数会获取相关的节点,损失函数则会将函数值添加到loss collection中。