Fork版本项目地址:SSD
参考自集智专栏
一、SSD基础
在分类器基础之上想要识别物体,实质就是 用分类器扫描整张图像,定位特征位置 。这里的关键就是用什么算法扫描,比如可以将图片分成若干网格,用分类器一个格子、一个格子扫描,这种方法有几个问题:
问题1 : 目标正好处在两个网格交界处,就会造成分类器的结果在两边都不足够显著,造成漏报(True Negative)。
问题2 : 目标过大或过小,导致网格中结果不足够显著,造成漏报。
针对第一点,可以采用相互重叠的网格。比如一个网格大小是 32x32 像素,那么就网格向下移动时,只动 8 个像素,走四步才完全移出以前的网格。针对第二点,可以采用大小网格相互结合的策略,32x32 网格扫完,64x64 网格再扫描一次,16x16 网格也再扫一次。
但是这样会带来其他问题——我们为了保证准确率, 对同一张图片扫描次数过多,严重影响了计算速度 ,造成这种策略 无法做到实时标注 。
为了快速、实时标注图像特征,对于整个识别定位算法,就有了诸多改进方法。
一个最基本的思路是,合理使用卷积神经网络的内部结构,避免重复计算。用卷积神经网络扫描某一图片时,实际上卷积得到的结果已经存储了不同大小的网格信息,这一过程实际上已经完成了我们上一部分提出的改进措施,如下图所示,我们发现前几层卷积核的结果更关注细节,后面的卷积层结果更加关注整体:
对于问题1,如果一个物体位于两个格子的中间,虽然两边都不一定足够显著,但是两边的基本特征如果可以合理组合的话,我们就不需要再扫描一次。而后几层则越来越关注整体,对问题2,目标可能会过大过小,但是特征同样也会留下。也就是说,用卷积神经网络扫描图像过程中,由于深度神经网络本身就有好几层卷积、实际上已经反复多次扫描图像,以上两个问题可以通过合理使用卷积神经网络的中间结果得到解决。
在 SSD 算法之前,MultiBox,FastR-CNN 法都采用了两步的策略,即第一步通过深度神经网络,对潜在的目标物体进行定位,即先产生Box;至于Box 里面的物体如何分类,这里再进行第二步计算。此外第一代的 YOLO 算法可以做到一步完成计算加定位,但是结构中采用了全连接层,而全连接层有很多问题,并且正在逐步被深度神经网络架构“抛弃”。
二、TF_SSD项目中网络的结构
回到项目中,以VGG300(/nets/ssd_vgg_300.py)为例,大体思路就是,用VGG 深度神经网络的前五层,并额外多加几层结构,最后提取其中几层进过卷积后的结果,进行网格搜索,找目标特征。对应到函数里,转化为三个大部分,原网络结构、添加网络结构、SSD处理结构:
def ssd_net(inputs, num_classes=SSDNet.default_params.num_classes, feat_layers=SSDNet.default_params.feat_layers, anchor_sizes=SSDNet.default_params.anchor_sizes, anchor_ratios=SSDNet.default_params.anchor_ratios, normalizations=SSDNet.default_params.normalizations, is_training=True, dropout_keep_prob=0.5, prediction_fn=slim.softmax, reuse=None, scope='ssd_300_vgg'): """SSD net definition. """ # if data_format == 'NCHW': # inputs = tf.transpose(inputs, perm=(0, 3, 1, 2)) # End_points collect relevant activations for external use. """ net = layers_lib.repeat( inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers_lib.repeat(net, 2, layers.conv2d, 128, [3, 3], scope='conv2') net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers_lib.repeat(net, 3, layers.conv2d, 256, [3, 3], scope='conv3') net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') net = layers_lib.repeat(net, 3, layers.conv2d, 512, [3, 3], scope='conv4') net = layers_lib.max_pool2d(net, [2, 2], scope='pool4') net = layers_lib.repeat(net, 3, layers.conv2d, 512, [3, 3], scope='conv5') net = layers_lib.max_pool2d(net, [2, 2], scope='pool5') """ end_points = {} with tf.variable_scope(scope, 'ssd_300_vgg', [inputs], reuse=reuse): ###################################### # 前五个 Blocks,首先照搬 VGG16 架构 # # 注意这里使用 end_points 标注中间结果 # ###################################### # ——————————————————Original VGG-16 blocks.——————————————————————— net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') end_points['block1'] = net net = slim.max_pool2d(net, [2, 2], scope='pool1') # Block 2. net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') end_points['block2'] = net net = slim.max_pool2d(net, [2, 2], scope='pool2') # Block 3. net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') end_points['block3'] = net net = slim.max_pool2d(net, [2, 2], scope='pool3') # Block 4. net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') end_points['block4'] = net net = slim.max_pool2d(net, [2, 2], scope='pool4') # Block 5. net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') end_points['block5'] = net net = slim.max_pool2d(net, [3, 3], stride=1, scope='pool5') # 池化层步长由2修改到三 #################################### # 后六个 Blocks,使用额外卷积层 # #################################### # ————————————Additional SSD blocks.—————————————————————— # Block 6: let's dilate the hell out of it! net = slim.conv2d(net, 1024, [3, 3], rate=6, scope='conv6') end_points['block6'] = net net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training) # Block 7: 1x1 conv. Because the fuck. net = slim.conv2d(net, 1024, [1, 1], scope='conv7') end_points['block7'] = net net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training) # Block 8/9/10/11: 1x1 and 3x3 convolutions stride 2 (except lasts). end_point = 'block8' with tf.variable_scope(end_point): net = slim.conv2d(net, 256, [1, 1], scope='conv1x1') net = custom_layers.pad2d(net, pad=(1, 1)) net = slim.conv2d(net, 512, [3, 3], stride=2, scope='conv3x3', padding='VALID') end_points[end_point] = net end_point = 'block9' with tf.variable_scope(end_point): net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') net = custom_layers.pad2d(net, pad=(1, 1)) net = slim.conv2d(net, 256, [3, 3], stride=2, scope='conv3x3', padding='VALID') end_points[end_point] = net end_point = 'block10' with tf.variable_scope(end_point): net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID') end_points[end_point] = net end_point = 'block11' with tf.variable_scope(end_point): net = slim.conv2d(net, 128, [1, 1], scope='conv1x1') net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID') end_points[end_point] = net ###################################### # 每个中间层 end_points 返回中间结果 # # 将各层预测结果存入列表,返回给优化函数 # ###################################### # Prediction and localisations layers. predictions = [] logits = [] localisations = [] # feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'] for i, layer in enumerate(feat_layers): with tf.variable_scope(layer + '_box'): p, l = ssd_multibox_layer(end_points[layer], num_classes, anchor_sizes[i], anchor_ratios[i], normalizations[i]) """ 框的数目等于anchor_sizes[i]和anchor_ratios[i]的长度和 anchor_sizes=[(21., 45.), (45., 99.), (99., 153.), (153., 207.), (207., 261.), (261., 315.)] anchor_ratios=[[2, .5], [2, .5, 3, 1./3], [2, .5, 3, 1./3], [2, .5, 3, 1./3], [2, .5], [2, .5]] normalizations=[20, -1, -1, -1, -1, -1] """ predictions.append(prediction_fn(p)) # prediction_fn=slim.softmax logits.append(p) localisations.append(l) return predictions, localisations, logits, end_points ssd_net.default_image_size = 300
在整个函数最后,给出了ssd_arg_scope函数,用于约束网络中的超参数设定,用法脚本头中已经给了:
Usage:
with slim.arg_scope(ssd_vgg.ssd_vgg()):
outputs, end_points = ssd_vgg.ssd_vgg(inputs)
def ssd_arg_scope(weight_decay=0.0005, data_format='NHWC'): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=tf.nn.relu, weights_regularizer=slim.l2_regularizer(weight_decay), weights_initializer=tf.contrib.layers.xavier_initializer(), biases_initializer=tf.zeros_initializer()): with slim.arg_scope([slim.conv2d, slim.max_pool2d], padding='SAME', data_format=data_format): with slim.arg_scope([custom_layers.pad2d, custom_layers.l2_normalization, custom_layers.channel_to_last], data_format=data_format) as sc: return sc
a、超参数设定
实际上原程序中超参数作为一个class属性给出的,我们现在不关心这个class的信息,仅仅将其包含超参数设定的部分提取出来,提升对上面网络的理解,
SSDParams = namedtuple('SSDParameters', ['img_shape', 'num_classes', 'no_annotation_label', 'feat_layers', 'feat_shapes', 'anchor_size_bounds', 'anchor_sizes', 'anchor_ratios', 'anchor_steps', 'anchor_offset', 'normalizations', 'prior_scaling' ]) class SSDNet(object): default_params = SSDParams( img_shape=(300, 300), num_classes=21, no_annotation_label=21, feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'], feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)], anchor_size_bounds=[0.15, 0.90], # anchor_size_bounds=[0.20, 0.90], anchor_sizes=[(21., 45.), (45., 99.), (99., 153.), (153., 207.), (207., 261.), (261., 315.)], anchor_ratios=[[2, .5], [2, .5, 3, 1./3], [2, .5, 3, 1./3], [2, .5, 3, 1./3], [2, .5], [2, .5]], anchor_steps=[8, 16, 32, 64, 100, 300], anchor_offset=0.5, normalizations=[1, -1, -1, -1, -1, -1], # 控制SSD层处理时是否预先沿着HW正则化 prior_scaling=[0.1, 0.1, 0.2, 0.2] )
b、SSD处理结构
# Prediction and localisations layers. predictions = [] logits = [] localisations = [] # feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'] for i, layer in enumerate(feat_layers): with tf.variable_scope(layer + '_box'): p, l = ssd_multibox_layer(end_points[layer], # <-----SSD处理 num_classes, anchor_sizes[i], anchor_ratios[i], normalizations[i]) predictions.append(prediction_fn(p)) # prediction_fn=slim.softmax logits.append(p) localisations.append(l) return predictions, localisations, logits, end_points
在网络架构的最后,会对选取的特征层外接新的卷积处理(上面代码),处理函数如下:
def tensor_shape(x, rank=3): """Returns the dimensions of a tensor. Args: image: A N-D Tensor of shape. Returns: A list of dimensions. Dimensions that are statically known are python integers,otherwise they are integer scalar tensors. """ if x.get_shape().is_fully_defined(): return x.get_shape().as_list() else: # get_shape返回值,with_rank相当于断言assert,是否rank为指定值 static_shape = x.get_shape().with_rank(rank).as_list() # tf.shape返回张量,其中num解释为"The length of the dimension `axis`.",axis默认为0 dynamic_shape = tf.unstack(tf.shape(x), num=rank) # list,有定义的给数字,没有的给tensor return [s if s is not None else d for s, d in zip(static_shape, dynamic_shape)] def ssd_multibox_layer(inputs, num_classes, sizes, ratios=[1], normalization=-1, bn_normalization=False): """Construct a multibox layer, return a class and localization predictions. """ net = inputs if normalization > 0: net = custom_layers.l2_normalization(net, scaling=True) # Number of anchors. num_anchors = len(sizes) + len(ratios) # Location. num_loc_pred = num_anchors * 4 # 每一个框有四个坐标 loc_pred = slim.conv2d(net, num_loc_pred, [3, 3], activation_fn=None, scope='conv_loc') # 输出C表示不同框的某个坐标 # 强制转换为NHWC loc_pred = custom_layers.channel_to_last(loc_pred) # NHW(num_anchors+4)->NHW,num_anchors,4 loc_pred = tf.reshape(loc_pred, tensor_shape(loc_pred, 4)[:-1]+[num_anchors, 4]) # Class prediction. num_cls_pred = num_anchors * num_classes # 每一个框都要计算所有的类别 cls_pred = slim.conv2d(net, num_cls_pred, [3, 3], activation_fn=None, scope='conv_cls') # 输出C表示不同框的对某个类的预测 # 强制转换为NHWC cls_pred = custom_layers.channel_to_last(cls_pred) # NHW(num_anchors+类别)->NHW,num_anchors,类别 cls_pred = tf.reshape(cls_pred, tensor_shape(cls_pred, 4)[:-1]+[num_anchors, num_classes]) return cls_pred, loc_pred
根据是否正则化的的参数,对特征层进行L2正则化(空间维度C上正则化),具体流程见下节
然后并行的在选定特征层后面加上两个卷积,一个输出通道为num_anchors×4,一个输出通道为num_anchors×类别数
将两个卷积的输出格维度各自扩展一维,排序转换为:[NHW,num_anchors,4] 和 [NHW,num_anchors,类别]
此时我们可以知道网络结构函数的返回的意义了:各个指定层SSD处理后输出的框对类别的概率,各个指定层SSD处理后输出的框坐标修正,各个指定层SSD处理后输出的框对类别的原始输出,所有中间层的end_point。
c、custom_layers.l2_normalization:特征层L2正则化
首先在特征层维度进行正则化,过程见nn.l2_normalize,然后对每一个层取一个scale因子,对各个层放缩调整(因子是可学习的),最后返回这个调整后的特征
@add_arg_scope def l2_normalization( inputs, scaling=False, scale_initializer=init_ops.ones_initializer(), reuse=None, variables_collections=None, outputs_collections=None, data_format='NHWC', trainable=True, scope=None): """Implement L2 normalization on every feature (i.e. spatial normalization). Should be extended in some near future to other dimensions, providing a more flexible normalization framework. Args: inputs: a 4-D tensor with dimensions [batch_size, height, width, channels]. scaling: whether or not to add a post scaling operation along the dimensions which have been normalized. scale_initializer: An initializer for the weights. reuse: whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given. variables_collections: optional list of collections for all the variables or a dictionary containing a different list of collection per variable. outputs_collections: collection to add the outputs. data_format: NHWC or NCHW data format. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for `variable_scope`. Returns: A `Tensor` representing the output of the operation. """ with variable_scope.variable_scope( scope, 'L2Normalization', [inputs], reuse=reuse) as sc: inputs_shape = inputs.get_shape() inputs_rank = inputs_shape.ndims dtype = inputs.dtype.base_dtype # 在C上做l2标准化 if data_format == 'NHWC': # norm_dim = tf.range(1, inputs_rank-1) norm_dim = tf.range(inputs_rank-1, inputs_rank) params_shape = inputs_shape[-1:] elif data_format == 'NCHW': # norm_dim = tf.range(2, inputs_rank) norm_dim = tf.range(1, 2) params_shape = (inputs_shape[1]) # Normalize along spatial dimensions. outputs = nn.l2_normalize(inputs, norm_dim, epsilon=1e-12) # Additional scaling. if scaling: # 从collections获取变量 scale_collections = utils.get_variable_collections( variables_collections, 'scale') # 创建变量,shape=C的层数 scale = variables.model_variable('gamma', shape=params_shape, dtype=dtype, initializer=scale_initializer, collections=scale_collections, trainable=trainable) if data_format == 'NHWC': outputs = tf.multiply(outputs, scale) elif data_format == 'NCHW': scale = tf.expand_dims(scale, axis=-1) scale = tf.expand_dims(scale, axis=-1) outputs = tf.multiply(outputs, scale) # outputs = tf.transpose(outputs, perm=(0, 2, 3, 1)) # 为outputs添加别名,并将之收集进collection,返回原节点 return utils.collect_named_outputs(outputs_collections, sc.original_name_scope, outputs)
至此,网络结构的介绍就完成了,下一节我们将关注目标检测模型的关键技术之一:定位框的生成,并串联本节,理解整个SSD网络的生成过程。
附录、相关实现
custom_layers.channel_to_last:NHWC转化
@add_arg_scope # 层可以被slim.arg_scope设定 def channel_to_last(inputs, data_format='NHWC', scope=None): """Move the channel axis to the last dimension. Allows to provide a single output format whatever the input data format. Args: inputs: Input Tensor; data_format: NHWC or NCHW. Return: Input in NHWC format. """ with tf.name_scope(scope, 'channel_to_last', [inputs]): if data_format == 'NHWC': net = inputs elif data_format == 'NCHW': net = tf.transpose(inputs, perm=(0, 2, 3, 1)) return net
custom_layers.pad2d:2D-tensor填充
@add_arg_scope # 层可以被slim.arg_scope设定 def pad2d(inputs, pad=(0, 0), mode='CONSTANT', data_format='NHWC', trainable=True, scope=None): """2D Padding layer, adding a symmetric padding to H and W dimensions. Aims to mimic padding in Caffe and MXNet, helping the port of models to TensorFlow. Tries to follow the naming convention of `tf.contrib.layers`. Args: inputs: 4D input Tensor; pad: 2-Tuple with padding values for H and W dimensions;(填充的宽度) mode: Padding mode. C.f. `tf.pad` data_format: NHWC or NCHW data format. """ with tf.name_scope(scope, 'pad2d', [inputs]): # Padding shape. if data_format == 'NHWC': paddings = [[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]] elif data_format == 'NCHW': paddings = [[0, 0], [0, 0], [pad[0], pad[0]], [pad[1], pad[1]]] net = tf.pad(inputs, paddings, mode=mode) return net
slim的vgg_16
def vgg_16(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16'): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. Returns: the last op containing the log predictions and end_points dict. """ with variable_scope.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with arg_scope( [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], outputs_collections=end_points_collection): net = layers_lib.repeat( inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers_lib.repeat(net, 2, layers.conv2d, 128, [3, 3], scope='conv2') net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers_lib.repeat(net, 3, layers.conv2d, 256, [3, 3], scope='conv3') net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') net = layers_lib.repeat(net, 3, layers.conv2d, 512, [3, 3], scope='conv4') net = layers_lib.max_pool2d(net, [2, 2], scope='pool4') net = layers_lib.repeat(net, 3, layers.conv2d, 512, [3, 3], scope='conv5') net = layers_lib.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = layers.conv2d(net, 4096, [1, 1], scope='fc7') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points vgg_16.default_image_size = 224
不常用API记录
nn.l2_normalize:L2正则化层
slim.repeat:重复层快速构建
Tensor.get_shape().with_rank(rank).as_list()
:加类似断言的shape获取函数
tensorflow.contrib.layers.python.layers.utils.collect_named_outputs:变量添加进collections,并取别名