• 『PyTorch』第五弹_深入理解Tensor对象_上:初始化以及尺寸调整


    一、创建Tensor

    特殊方法:

    t.arange(1,6,2)
    t.linspace(1,10,3)
    t.randn(2,3) # 标准分布,*size t.randperm(5) # 随机排序,从0到n t.normal(means=t.arange(0, 11), std=t.arange(1, 0, -0.1))

    概览:

    """创建空Tensor"""
    a = t.Tensor(2, 3)
    # 创建和b大小一致的Tensor
    c = t.Tensor(a.size())
    print(a,c)  # 数值取决于内存空间状态
    
    -9.6609e+30  7.9594e-43 -4.1334e+27
     7.9594e-43 -4.1170e+27  7.9594e-43
    [torch.FloatTensor of size 2x3]
     
    -9.6412e+30  7.9594e-43 -9.6150e+30
     7.9594e-43 -4.1170e+27  7.9594e-43
    [torch.FloatTensor of size 2x3]
    """由list/tuple创建Tensor"""
    b = t.Tensor([[1,2,3],[4,5,6]])
    print(b)  # 根据list初始化Tensor
    
    print(b.tolist())
    print(b)  # 并非inplace转换
    
     1  2  3
     4  5  6
    [torch.FloatTensor of size 2x3]
    
    [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
    
     1  2  3
     4  5  6
    [torch.FloatTensor of size 2x3]
    # 等价写法,查看元素个数(2*3=6)
    print(b.numel())
    print(b.nelement())
    
    6
    6
    # 传入tuple等价于传入list
    d = t.Tensor((2,3))
    print(d)
    
     2
     3
    [torch.FloatTensor of size 2]
    """创建特定Tensor"""
    print(t.eye(2,3))
    print(t.ones(2,3))
    print(t.zeros(2,3))
    print(t.arange(1,6,2))
    print(t.linspace(1,10,3))
    # 几个特殊初始化方法
    print(t.randn(2,3))  # 标准分布,*size
    print(t.randperm(5))  # 随机排序,从0到n
    print(t.normal(means=t.arange(0, 11), std=t.arange(1, 0, -0.1)))
    
     1  0  0
     0  1  0
    [torch.FloatTensor of size 2x3]
    
    
     1  1  1
     1  1  1
    [torch.FloatTensor of size 2x3]
    
    
     0  0  0
     0  0  0
    [torch.FloatTensor of size 2x3]
    
    
     1
     3
     5
    [torch.FloatTensor of size 3]
    
    
      1.0000
      5.5000
     10.0000
    [torch.FloatTensor of size 3]
    
    
    -0.9959 -0.8446  0.7241
     3.0315 -0.5367  1.0722
    [torch.FloatTensor of size 2x3]
    
    
     4
     3
     2
     1
     0
    [torch.LongTensor of size 5]
    
    
     -0.5880
      1.2708
      1.5530
      3.2490
      4.7693
      4.9497
      6.0663
      6.1482
      7.9109
      8.9492
     10.0000
    [torch.FloatTensor of size 11]

    二、尺度调整

    特殊方法:

    a.view(-1,3)
    b.unsqueeze_(0)
    b.resize_(3,3)
    

    概览:

    a = t.arange(0,6)
    print(a.view(2,3))  # 非inplace
    print(a.view(-1,3))  # -1为自动计算大小
    
     0  1  2
     3  4  5
    [torch.FloatTensor of size 2x3]
    
    
     0  1  2
     3  4  5
    [torch.FloatTensor of size 2x3]
    b = a.view(-1,3)
    b.unsqueeze_(0)
    print(b)
    print(b.size())
    
    (0 ,.,.) = 
      0  1  2
      3  4  5
    [torch.FloatTensor of size 1x2x3]
    
    torch.Size([1, 2, 3])
    
    c = b.view(1,1,1,2,3)
    print(c.squeeze_(0))  # 压缩第0个1
    print(c.squeeze_())  # 压缩全部的1
    
    (0 ,0 ,.,.) = 
      0  1  2
      3  4  5
    [torch.FloatTensor of size 1x1x2x3]
    
    
     0  1  2
     3  4  5
    [torch.FloatTensor of size 2x3]
    
    
    # view要求前后元素数相同,resize_没有这个要求
    # resize_没有对应的非inplace操作版本
    print(b.resize_(1,3))
    print(b.resize_(3,3))
    print(b)
    
     0  1  2
    [torch.FloatTensor of size 1x3]
    
    
     0.0000e+00  1.0000e+00  2.0000e+00
     3.0000e+00  4.0000e+00  5.0000e+00
     3.3845e+15  0.0000e+00  0.0000e+00
    [torch.FloatTensor of size 3x3]
    
    
     0.0000e+00  1.0000e+00  2.0000e+00
     3.0000e+00  4.0000e+00  5.0000e+00
     3.3845e+15  0.0000e+00  0.0000e+00
    [torch.FloatTensor of size 3x3]
  • 相关阅读:
    API协议
    执行聚合
    执行过滤
    执行查询
    介绍查询语言
    探索你的数据
    探索你的集群(翻译)
    es6.4基本概念(中文翻译)
    Python3.7.4安装
    elasticsearch常用请求
  • 原文地址:https://www.cnblogs.com/hellcat/p/8445186.html
Copyright © 2020-2023  润新知