torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现
Varibale包含三个属性:
- data:存储了Tensor,是本体的数据
- grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致
- grad_fn:指向Function对象,用于反向传播的梯度计算之用
data
import torch as t from torch.autograd import Variable x = Variable(t.ones(2, 2), requires_grad = True) x # 实际查询的是.data,是个Tensor
实际上查询x和查询x.data返回结果一致,
Variable containing:
1 1
1 1
[torch.FloatTensor of size 2x2]
梯度求解
构建一个简单的方程:y = x[0,0] + x[0,1] + x[1,0] + x[1,1],Variable的运算结果也是Variable,但是,中间结果反向传播中不会被求导()
这和TensorFlow不太一致,TensorFlow中中间运算果数据结构均是Tensor,
y = x.sum() y """ Variable containing: 4 [torch.FloatTensor of size 1] """
可以查看目标函数的.grad_fn方法,它用来求梯度,
y.grad_fn """ <SumBackward0 at 0x18bcbfcdd30> """ y.backward() # 反向传播 x.grad # Variable的梯度保存在Variable.grad中 """ Variable containing: 1 1 1 1 [torch.FloatTensor of size 2x2] """
grad属性保存在Variable中,新的梯度下来会进行累加,可以看到再次求导后结果变成了2,
y.backward() x.grad # 可以看到变量梯度是累加的 """ Variable containing: 2 2 2 2 [torch.FloatTensor of size 2x2] """
所以要归零,
x.grad.data.zero_() # 归零梯度,注意,在torch中所有的inplace操作都是要带下划线的,虽然就没有.data.zero()方法 """ 0 0 0 0 [torch.FloatTensor of size 2x2] """
对比Variable和Tensor的接口,相差无两,
Variable和Tensor的接口近乎一致,可以无缝切换 x = Variable(t.ones(4, 5)) y = t.cos(x) # 传入Variable x_tensor_cos = t.cos(x.data) # 传入Tensor print(y) print(x_tensor_cos) """ Variable containing: 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 [torch.FloatTensor of size 4x5] 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 0.5403 [torch.FloatTensor of size 4x5] """