• 『cs231n』作业2选讲_通过代码理解Dropout


    Dropout

    def dropout_forward(x, dropout_param):
        p, mode = dropout_param['p'], dropout_param['mode']
        if 'seed' in dropout_param:  
            np.random.seed(dropout_param['seed'])
    
        mask = None
        out = None
        if mode == 'train':    
    #训练环节开启
            mask = (np.random.rand(*x.shape) < p) / p    
            out = x * mask
        elif mode == 'test':   #测试环节关闭 
            out = x
    
        cache = (dropout_param, mask)
        out = out.astype(x.dtype, copy=False)
    
        return out, cache
    
    
    def dropout_backward(dout, cache):
        dropout_param, mask = cache
        mode = dropout_param['mode']
        dx = None
    
        if mode == 'train':    
            dx = dout * mask
        elif mode == 'test':    
            dx = dout
    
        return dx
    

    Batch Normalization

    Batch Normalization就是在每一层的wx+b和f(wx+b)之间加一个归一化(将wx+b归一化成:均值为0,方差为1

    通常:Means should be close to zero and stds close to one

    gamma, beta = np.ones(C), np.zeros(C)
    

    先给出Batch Normalization的算法和反向求导公式:

     

    import numpy as np
    
    def batchnorm_forward(x, gamma, beta, bn_param):
        mode = bn_param['mode']
        eps = bn_param.get('eps', 1e-5)
        momentum = bn_param.get('momentum', 0.9)
        N, D = x.shape
        running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
        running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
    
        out, cache = None, None
        if mode == 'train':    
            sample_mean = np.mean(x, axis=0, keepdims=True)       # [1,D]    
            sample_var = np.var(x, axis=0, keepdims=True)         # [1,D] 
            x_normalized = (x - sample_mean) / np.sqrt(sample_var + eps)    # [N,D]    
            out = gamma * x_normalized + beta    
            cache = (x_normalized, gamma, beta, sample_mean, sample_var, x, eps)    
            running_mean = momentum * running_mean + (1 - momentum) * sample_mean    
            running_var = momentum * running_var + (1 - momentum) * sample_var
        elif mode == 'test':    
            x_normalized = (x - running_mean) / np.sqrt(running_var + eps)    
            out = gamma * x_normalized + beta
        else:    
            raise ValueError('Invalid forward batchnorm mode "%s"' % mode)
    
        # Store the updated running means back into bn_param
        bn_param['running_mean'] = running_mean
        bn_param['running_var'] = running_var
    
        return out, cache
    
    def batchnorm_backward(dout, cache):
        dx, dgamma, dbeta = None, None, None
        x_normalized, gamma, beta, sample_mean, sample_var, x, eps = cache
        N, D = x.shape
        dx_normalized = dout * gamma       # [N,D]
        x_mu = x - sample_mean             # [N,D]
        sample_std_inv = 1.0 / np.sqrt(sample_var + eps)    # [1,D]
        dsample_var = -0.5 * np.sum(dx_normalized * x_mu, axis=0, keepdims=True) * sample_std_inv**3
        dsample_mean = -1.0 * np.sum(dx_normalized * sample_std_inv, axis=0, keepdims=True) -                                 
                                       2.0 * dsample_var * np.mean(x_mu, axis=0, keepdims=True)
        dx1 = dx_normalized * sample_std_inv
        dx2 = 2.0/N * dsample_var * x_mu
        dx = dx1 + dx2 + 1.0/N * dsample_mean
        dgamma = np.sum(dout * x_normalized, axis=0, keepdims=True)
        dbeta = np.sum(dout, axis=0, keepdims=True)
    
        return dx, dgamma, dbeta
    

    批量归一化(spatia Batch Normalization)

    我们已经看到,批量归一化是训练深度完全连接网络的非常有用的技术。批量归一化也可以用于卷积网络,但我们需要调整它一点;该修改将被称为“空间批量归一化”。
    通常,批量归一化接受形状(N,D)的输入并产生形状(N,D)的输出,其中我们在小批量维度N上归一化。对于来自卷积层的数据,批归一化需要接受形状(N,C,H,W),并且产生形状(N,C,H,W)的输出,其中N维给出小容器大小,(H,W)维给出特征图的空间大小。
    如果使用卷积产生特征图,则我们期望每个特征通道的统计在相同图像内的不同图像和不同位置之间相对一致。因此,空间批量归一化通过计算小批量维度N和空间维度H和W上的统计量来计算C个特征通道中的每一个的平均值和方差。

    同样的:#Means should be close to zero and stds close to one

    gamma, beta = np.ones(C), np.zeros(C)
    

     代码如下,

    def spatial_batchnorm_forward(x, gamma, beta, bn_param):
        N, C, H, W = x.shape
        x_new = x.transpose(0, 2, 3, 1).reshape(N*H*W, C)
        out, cache = batchnorm_forward(x_new, gamma, beta, bn_param)
        out = out.reshape(N, H, W, C).transpose(0, 3, 1, 2)
    
        return out, cache
    
    
    def spatial_batchnorm_backward(dout, cache):
        N, C, H, W = dout.shape
        dout_new = dout.transpose(0, 2, 3, 1).reshape(N*H*W, C)
        dx, dgamma, dbeta = batchnorm_backward(dout_new, cache)
        dx = dx.reshape(N, H, W, C).transpose(0, 3, 1, 2)
    
        return dx, dgamma, dbeta
    
  • 相关阅读:
    黑盒测试实践——每日例会记录(一)
    《高级软件测试》—如何计算团队成员贡献分
    TestLink学习——第一周使用小结
    BugkuCTF 你必须让他停下
    BugkuCTF 域名解析
    BugkuCTF web3
    BugkuCTF 矛盾
    BugkuCTF web基础$_POST
    BugkuCTF web基础$_GET
    BugkuCTF 计算器
  • 原文地址:https://www.cnblogs.com/hellcat/p/7232523.html
Copyright © 2020-2023  润新知